Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Les coordonnées d'un vecteur v de notre espace vectoriel favori R2 dans une base (i,j) sont deux nombres x et y qui vérifient l'équation caractéristique des coordonnées : v = xi + yj. La recherche des coordonnées est donc un probl`eme de décomposition linéaire. (1 2 ) = x (3 4 ) + y (5 6 ) .
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Les coordonnées géographiques d'un point seront donc interpolées localement entre des parallèles et des méridiens en faisant ce que l'on appelle couramment "une règle de trois". Longitude = 0.10 - (0.10 x d1/d2). Latitude = 54.30 - (0.10 x l1/l2).
Les coordonnées géographiques peuvent être écrites de la manière suivante : degrés, minutes et secondes (DMS), par exemple 41° 23' 45" N. Comme vu précédemment, les parallèles et les méridiens sont divisés en degrés. Chaque degré de latitude et de longitude est divisé en 60 unités qu'on appelle des minutes.
Habituellement, les coordonnées GPS s'expriment en système sexagésimal, c'est-à-dire sous le format DMS : degrés (°) minutes (′) secondes (″). Exemple : 48°51'12.2″N 2°20'55.7″E correspondent aux coordonnées GPS de la ville de Paris. Elles peuvent également être exprimées en degré décimal comme suit : 48.8534, 2.3488.
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ).
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
Construire le symétrique du point A, par rapport au point O, c'est placer le point A' sur la demi-droite [AO), tel que : AO = OA'. On mesure la longueur AO, à la règle ou au compas ; Puis on reporte cette longueur de l'autre côté, sur la droite (AO).
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
On peut trouver la première coordonnée du vecteur en calculant la différence entre les abscisses 𝑥 de l'extrémité et de l'origine ; la première coordonnée (ou de manière équivalente, la coordonnée en 𝑥 ) du vecteur ⃑ 𝑣 est − 7 − ( − 1 ) = − 6 .
Repère orthogonal et orthonormal
Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
Définition - Le produit vectoriel de deux vecteurs →u et →v est le vecteur →u×→v qui satisfait les propriétés suivantes : →u×→v est perpendiculaire à →u et à →v; ‖→u×→v‖=‖→u‖‖→v‖|sinθ|
On appelle produit scalaire de u et v le réel, noté u ⋅v , défini par : u ⋅v =∥u ∥×∥v ∣×cos(u ,v ).
Le déterminant est l'une des techniques qui permet de savoir si deux vecteurs sont colinéaires. S'ils se sont, le déterminant est nul. Et réciproquement, si le déterminant est nul les vecteurs sont colinéaires.
Considérons deux points p et p de coordonnées res- pectives (x, y) et (x ,y ). Leur distance euclidienne est donnée par la formule p−p = √ (x − x )2 + (y − y )2.
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
La longitude d'un point va de 180 ° ouest à 180° est. La latitude d'un point correspond à son ordonnée. On la lit sur le méridien de Greenwitch partagé en arcs de cercle correspondant à des angles de 1°.
La latitude est indiquée par des chiffres, sur les côtés de la carte. La longitude est indiquée par des chiffres, en haut et en bas de la carte. Votre point de référence sera l'endroit où la latitude et la longitude se croisent à votre niveau.
La longitude est l'angle que forme le point considéré avec le centre de la Terre et le méridien de Greenwich. Il faut préciser la position est-ouest par rapport au méridien de Greenwich. La latitude est l'angle que forme le point considéré avec le centre de la Terre et l'équateur.