Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Le nombre de diviseurs d'un nombre est égal au produit des puissances de chacun de ses facteurs premiers, chacune augmentée de 1.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Soit a et b deux nombres entiers naturels. On dit que b est un diviseur de a s'il existe un nombre entier naturel q tel que a = b × q. On dit aussi que a est un multiple de b, ou que a est divisible par b. Exemple : 72 est divisible par 8 (et par 9) car 72 = 8 × 9.
Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Pour trouver tous les diviseurs, on multiplie les branches de l'arbres. 1) a) Décompose en produit de facteurs premiers le nombre 126. b) A l'aide de la méthode précédente avec un arbre, fait apparaître tous les diviseurs de 126. 2) Mêmes questions avec le nombre 450.
Les multiples et diviseurs
Le multiple d'un nombre est le produit de ce nombre avec un nombre entier. Par exemple : 6×8=48 donc 48 est un multiple de 6 et de 8. Si 48 est un multiple de 6 et de 8 alors 6 et 8 sont des diviseurs de 48.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 18 ; 24 ; 36 ; 72. ...
Remarque 1 : 1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples. Par exemple, 12 = 12 × 1 donc 1 divise 12 et 12 est un multiple de ...
Un diviseur est un nombre avec lequel tu peux diviser un autre nombre en n'ayant pas le reste. Le nombre 20 a donc six diviseurs: 20, 10, 5, 4, 2 et 1.
Les diviseurs entiers (positifs) de 12 sont {1, 2, 3, 4, 6, 12}.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Le plus grand des diviseurs communs de deux nombres a et b est appelé le PGCD (Plus Grand Commun Diviseur) de ces deux nombres. Recherche du PGCD de deux nombres entiers : Méthode: on fait la liste de tous les diviseurs de chaque nombre, puis parmi ceux qui sont communs aux deux nombres, on prend le plus grand.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100.
a) 220 : 1 = 220 220 : 2 = 110 220 : 4 = 55 220 : 5 = 44 220 : 10 = 22 220 : 11 = 20 Donc tous les diviseurs de 220 sont 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,et 220.
De fait, 200 est composé et possède exactement douze diviseurs : 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100 et 200. Mais cette propriété n'établit pas un record pour lui car 60, qui est plus petit, possède lui aussi douze diviseurs.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
En mathématiques, un entier différent de zéro est un diviseur d'un nombre entier, si le reste de la division du nombre par cet entier est égal à 0. Exemple : 3 et 18 sont des entiers. 3 est un diviseur de 18 car 18 : 3 = 6.
Tous les diviseurs de 60 sont : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 Tous les diviseurs de 100 sont : 1, 2, 4, 5, 10, 20, 25, 50, 100 Les diviseurs communs à 60 et 100 sont : 1, 2, 4, 5, 10, 20 Le plus grand diviseur commun à 60 et 100 est 20.
Soit deux nombres entiers a et b. Si le reste de la division euclidienne de a par b est nul, alors a est divisible par b (et b est un diviseur de a). Par exemple, 28 est divisible par 7 car 28 ÷ 7 = 4.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42. Les diviseurs de 51 sont : 1,3,17,51. Les diviseurs communs de 42 et 51 sont 1 et 3, donc 42 et 51 ne sont pas premiers entre eux.