Divisez le nombre de départ par la plus grande puissance de 8. Dans le nombre 98, le 9 indique qu'il y a 9 dizaines. Ce chiffre de 9 a été obtenu en divisant 98 par 101, soit 10.
Passer de la base b à la base 10(décimale)
Dans cette formule (VWXYZ)b = (Z*b0 + Y*b1+X*b2+W*b3+V*b4)10 pour passer de la base b à la base 10 il vous suffit d'effectuer l'opération comme vous le voyez. C'est très simple pour le passage à la base 10.
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal. L'hexadécimal et particulièrement pratique car avec 4 lettres un code exactement 4 bits soit un octet.
Pour réaliser cette conversion il suffit d'effectuer une succession de division par 2. Exemple : On souhaite convertir la valeur décimale 149(10) en un nombre binaire. La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers.
Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros). Il suffit ensuite de remplacer chaque paquet de 3 par le chiffre octal.
Le système de numérotation en octal est un système à base 8. Cela signifie qu'avec cette base on compte de 0 à 7, contrairement au décimal où l'ont compte de 0 à 9.
Ex : système de numération décimal (le nôtre). Dans 145, 1 = 1 centaine = 100, 4 = 4 dizaines = 40 et 5 = 5 unités = 5. La base est définie par le nombre de signes différents qui permettent d'écrire un nombre. En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2).
À chaque fois que l'on ajoute un symbole '0' à droite d'un nombre, on va multiplier par la base (16). Ainsi, A signifie 10 en base 10, A0 correspond à 160 et A00 à 2560 (10 x 16 x 16).
100 (4) + 1 (1) = 101 (5).
Transcodage : depuis toutes les bases vers le décimal
Passer de l'écriture en base b d'un nombre à son écriture décimale est aisé, il suffit de faire la somme de la multiplication de chaque chiffre d'indice k par son poids correspondant b k (b étant la base d'origine).
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
La base hexadécimale consiste à compter sur une base 16, c'est pourquoi au-delà des 10 premiers chiffres on a décidé d'ajouter les 6 premières lettres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Pourquoi la base 10 plutôt que la base 12 ? Sans doute parce que 5 et 2, diviseurs de 10, divisent TOUS les nombres. Ainsi, la division de n'importe quel entier par une puissance de 10 donne un nombre "décimal".
L'identité d'Euler
Parce qu'elle utilise 3 des opérations fondamentales en arithmétique : l'addition, la multiplication et l'exponentiation. L'identité d'Euler est considérée comme la plus belle formule mathématique.
Le système de numération à base 8 est un moyen de représenter les nombres avec 8 symboles. Selon sa place, le symbole indique ("pèse") une valeur particulière. Octet: un nombre binaire de huit bits, nommé byte en anglais. Un kilooctet (ko) comprend mille octets (en fait 1024).
Là encore, la conversion de l'octal en décimal est très similaire à la conversion du binaire en décimal, la seule différence est que cette fois nous allons multiplier les chiffres avec les puissances de 8 au lieu de 2.
Explication – Si nous ajoutons +1 au nombre (9999), il devient un nombre à 5 chiffres qui est 10000 (nombre à quatre chiffres). Donc 999 est le plus grand nombre à 3 chiffres du système numérique.
Par convention, on a choisi d'utiliser 0 à 9, puis A à F A vaut donc 10 (décimal) B = 11 C = 12 D = 13 E = 14 F = 15 Avec le même principe que pour la base 2, voyons le nombre 23D#H D * 16^0 = 13 + 3 * 16^1 = 48 + 2 * 16^2 = 512 ----- 573 Le passage d'une base quelconque en base 10 est donc très simple.