Pour calculer l'incertitude lors d'une multiplication ou d'une division, il faut diviser par deux la différence entre la valeur maximale et la valeur minimale pouvant être obtenue par les incertitudes.
L'incertitude est directement liée au fait qu'un mesurage n'est jamais parfait et que ces imperfections vont générer une erreur sur la valeur numérique obtenue (voir Erreur de mesure).
L'incertitude absolue s'exprime généralement avec un seul chiffre en utilisant les mêmes unités que celles associées à la mesure. Puisque l'incertitude est estimée à 5 mm, la mesure est arrondie (si nécessaire) au millimètre le plus proche. L'incertitude relative est le rapport entre l'incertitude absolue et la mesure.
Pour rendre compte du degré d'approximation auquel nous travaillerons, nous devrons estimer les erreurs commises dans les diverses mesures et nous devrons calculer leurs conséquences dans les résultats obtenus. C'est le but du calcul d'erreur ou calcul d'incertitude.
On distingue différentes sortes d'erreurs dont toute mesure peut être affectée: les erreurs systématiques, les erreurs accidentelles et la dispersion statistique.
Ainsi, une erreur et une incertitude diffèrent, en ce sens que l'erreur est la représentation de la différence entre une valeur mesurée d'une grandeur et une valeur de référence, et que l'incertitude évalue quantitativement la qualité d'un résultat de mesure, par un écart type.
Il suffit habituellement de fournir l'incertitude-type ou l'incertitude élargie avec 2 chiffres significatifs. Pour arrondir la valeur numérique du résultat de mesure, le dernier chiffre à retenir est celui qui a la même position que le deuxième chiffre significatif dans l'expression de l'incertitude.
En sciences, en métrologie (physique, chimie, biologie médicale, électronique…), en SHS, l'incertitude désigne, d'après Vold, la marge d'« imprécision » sur la valeur de la mesure d'une grandeur physique ou, d'après le VIM , la dispersion des valeurs qui pourraient raisonnablement être attribuées à une grandeur.
Synonyme : anxiété, doute, embarras, flottement, hésitation, indécision, indétermination, irrésolution, perplexité, scepticisme, vacillement.
Il est conseiller d'effectuer les calculs intermédiaires avec un nombre de chiffres significatifs plus élevé pour éviter les arrondis de calcul , par contre, il faut arrondir le résultat final au même nombre de chiffres significatifs que celui adopté lors de la mesure initiale.
Tel que montré dans l'encadré ci-dessus, on peut affirmer que deux valeurs mesurées concordent entre elles, s'il y a une intersection entre les deux intervalles de valeurs (zone hachurée sur le schéma).
Exemple : si on mesure une longueur de 15,5 cm avec une incertitude de ± 0,25 cm, alors lexp= 15,5 cm et U(l)= 0,3 cm. La longueur mesurée est alors exprimée sous la forme l= 15,5 ± 0,3 cm.
Le résultat doit être présenté sous la forme : G = Gme ± ∆G. L'incertitude est souvent difficile à évaluer ; elle ne sera jamais connue avec plus de 2 chiffres significatifs. Les chiffres indiqués pour la valeur de Gme doivent être cohérents avec l'estimation de ∆G. Par exemple : L = 23,4 ± 2,5 cm est correct.
L'incertitude absolue (ΔA) d'une somme ou d'une différence est égale à la somme des incertitudes absolues (ΔB + ΔC + …) : si A = B + C ou A = B - C, alors ΔA = ΔB + ΔC.
L'incertitude relative ∆x/x représente l'importance de l'erreur par rapport à la grandeur mesurée. L'incertitude relative n'a pas d'unités et s'exprime en général en % (100∆x/x).
La relation entre le titre molaire et la normalité est donc TMA=NA/ 3. Il en est de meme pour le calcul de l'incertitude : DTMA= DNA/ 3.
L'erreur absolue, notée δX, est l'écart qui existe entre la valeur mesurée et sa valeur théorique exacte exprimée avec la même unité. L'erreur relative est le quotient de l'erreur absolue à la valeur exacte. Ω ± % = ( . ± . )
Pour calculer un pourcentage d'erreur, utilisez la formule : [(valeur réelle - valeur théorique)/valeur réelle] x 100.
La formule utilisée pour calculer un pourcentage d'écart est la suivante : Différence entre une valeur mesurée ou expérimentale et une valeur acceptée ou connue, divisée par la valeur connue, multipliée par 100%.
Les erreurs systématiques sont souvent difficiles à détecter a priori, mais elles peuvent dans les cas les plus simples être déduites a posteriori à partir de l'allure des résultats. Il est alors possible de corriger les valeurs mesurées en leur ajoutant une correction compensant pour l'erreur systématique.
L'effet de la composante systématique de l'erreur peut être réduit par une correction, sans intervenir sur le système de mesurage ; dans l'exemple précédent, une correction de –2,9 μm (égale à l'erreur systématique changée de signe) sur les valeurs mesurées rapproche l'ensemble des résultats de la valeur vraie (les ...
« Où est l'erreur ? » est un livre-jeu où vous retrouverez 10 scènes inspirées de l'histoire, de la science, du sport, des voyages et des grandes explorations.