Pour réduire des fractions au même dénominateur, il faut trouver le plus petit multiple commun aux dénominateurs. On distingue plusieurs cas : L'un des dénominateurs est multiple de l'autre. Exemple : \frac{4}{3} et \frac{7}{6} ; 6 = 3 × 2.
METTRE AU MÊME DÉNOMINATEUR
o On transforme chaque fraction pour une autre équivalente, par dénominateur le PPCM. Pour cela on multiplie les deux membres de chaque fraction par le nombre résultat de diviser le PPCM entre le dénominateur.
Règle. Augmenter un nombre de x % revient à le multiplier par 1 + x. Diminuer un nombre de x % revient à le multiplier par 1 - x.
Pour réduire des fractions au même dénominateur, il faut trouver le plus petit multiple commun aux dénominateurs. On distingue plusieurs cas : L'un des dénominateurs est multiple de l'autre. Exemple : \frac{4}{3} et \frac{7}{6} ; 6 = 3 × 2.
REGLE : Si on multiplie (ou si on divise) le numérateur et le dénominateur d'une fraction par un même nombre non nul, alors on obtient une fraction égale.
Réduire une expression littérale revient à l'écrire le plus simplement avec le moins de termes possible. On regroupe les termes de l'expression du même type ensemble lorsque l'expression est composée d'additions et/ou de soustractions de termes.
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
le dénominateur est supérieur au numérateur est inférieure à 1. le dénominateur est inférieur au numérateur est supérieure à 1. le dénominateur est égal au numérateur est égale à 1. Quand deux fractions ont le même numérateur, la plus petite est celle qui a le plus grand dénominateur.
- Le PGCD de a et de b est le produit des facteurs premiers communs aux deux décompositions affectés de leur plus petit exposant. - Le PPCM de a et b est égal au produit de tous les facteurs premiers des deux décompositions affectés de leur plus grand exposant.
On utilise le PPCM lorsqu'on est amené à chercher le plus petit multiple qui est commun de TOUS les nombres dont on a affaire. Un exemple commun d'une situation où on peut utiliser le PPCM est quand on a plusieurs fractions et qu'on veut transformer ces fractions pourqu'elles aient toutes le même dénominateur.
Lorsqu'on simplifie une expression littérale, les nombres doivent être multipliés entre eux. Simplification de l'expression littérale D. On commence par placer les nombres devant les lettres classées par ordre alphabétique. On supprime ensuite les signes de multiplication inutiles et on multiplie les nombres entre eux.
Réduire une expression littérale c'est la transformer en une écriture moins volumineuse en additionnant les termes semblables. La règle est la suivante : Lorsque les parenthèses sont précédées du signe « + », on peut les supprimer.
Détaillez vos calculs : Plus vous détaillez les calculs, plus la relecture sera facile. Rappel : on n'écrit qu'un calcul par ligne. Ecrivez toujours à quoi correspond un calcul (je calcule…) et écrivez une phrase de conclusion à la fin d'un calcul.
Pour multiplier par 4, vous pouvez multiplier par 2 puis multiplier ce nouveau résultat par 2. Par exemple, 36 x 4 = 36 x 2 x 2 = 72 x 2 = 144. Pour multiplier par 10, c'est très simple, surtout quand cela concerne un nombre entier, il suffit de rajouter un zéro derrière le dernier chiffre comme dans 128 x 10 = 1280.
Multiple commun pour simplifier une fraction
Pour simplifier, il faut trouver le multiple commun au numérateur et au dénominateur, et diviser les deux termes de la fraction, par ce multiple.
Pour développer ou simplifier (réduire) une fraction, vous devez respectivement multiplier et diviser le numérateur ainsi que le dénominateur de la fraction avec le même nombre.