Réduire une matrice consiste à chercher une matrice semblable la plus simple possible : dans le meilleur des cas, une matrice diagonale (dont tous les éléments non diagonaux sont nuls — il s'agit alors d'une diagonalisation), sinon une matrice triangulaire supérieure (dont tous les éléments sous-diagonaux sont nuls — ...
Pour démontrer qu'une matrice A est diagonalisable, la méthode la plus classique consiste à calculer le polynôme caractéristique χA et à le factoriser pour déterminer les valeurs propres de A . Si χA n'est pas scindé, A n'est pas diagonalisable. Si χA est scindé à racines simples, A est diagonalisable.
Re : Diagonalisation de matrice 4*4
Donc c'est aussi det(B-xI). Les valeurs propres sont bien 1,1,-1,-1. Ensuite pour diagonaliser il faut trouver les vecteurs propres de 1, il faut résoudre Bv = 1v soit (B-1I)v = 0 (il y en a 2). Même chose pour -1: résoudre Bv = -1v soit (B+1I)v = 0, il y en a 2 aussi.
Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.
Déterminant : si n ≥ 2, det(comA) = (detA)n–1. Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n–2 A.
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Matrice diagonale
La diagonale principale d'une matrice carrée (ou d'un tableau carré de nombres) est l'ensemble des éléments dont l'indice de ligne et l'indice de colonne sont égaux. Une matrice est diagonale si tous les termes en dehors de sa diagonale principale dont nuls.
On appelle noyaude la matrice A, noté Ker (A) , l'ensemble des matrices colonnes X ∈ Mq,1(R) telles que AX = (0)p×1 .
En algèbre linéaire, une matrice est dite échelonnée en lignes si le nombre de zéros précédant la première valeur non nulle d'une ligne augmente strictement ligne par ligne jusqu'à ce qu'il ne reste éventuellement plus que des zéros.
La méthode du pivot de Gauss est une méthode pour transformer un système en un autre système équivalent (ayant les mêmes solutions) qui est triangulaire et est donc facile à résoudre. Les opérations autorisées pour transformer ce système sont : échange de deux lignes. multiplication d'une ligne par un nombre non nul.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.
On résout ( S ) par la méthode du pivot de Gauss. On a donc pour toutes matrices X et Y de M 3 , 1 ( R ) l'équivalence A X = Y ⇔ X = A ′ Y . On a donc pour toute matrice Y de M 3 , 1 ( R ) , Y = A A ′ Y on en déduit A A ′ = I 3 . De même pour toute matrice X de M 3 , 1 ( R ) , X = A ′ A X et donc A ′ A = I 3 .
Il suffit de rentrer chaque matrice de façon "naturelle" élément par élément, séparé d'un espace en effectuant un saut de ligne à chaque fin de ligne de la matrice. Vous pouvez entrer des entiers relatifs et des fractions de la forme -3/4 par exemple.
Une matrice A de Mn(K) M n ( K ) est dite inversible s'il existe B∈Mn(K) B ∈ M n ( K ) tel que AB=BA=In. A B = B A = I n . Une matrice B vérifiant la relation précédente est unique, elle s'appelle matrice inverse de A et se note A−1 .
Il est très facile de calculer le déterminant d'une matrice 2 x 2 car il y a une formule très simple. Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c.