Afin de résoudre une équation du premier degré dans \mathbb{C} comportant à la fois z et \overline{z} comme inconnues, on utilise le fait que, si z =x+iy, alors \overline{z} =x-iy (avec x et y deux réels).
Pour pouvoir résoudre une telle équation, il faut tout d'abord calculer le discriminant Δ. On le calcule. Ensuite, selon le résultat, on va pouvoir connaître le nombre de solutions qu'il y a, et les trouver s'il y en a. Si Δ < 0 , rien de plus simple : il n'y a pas de solution.
Calcul du discriminant : ∆ = b2 −4ac = ( √2)2 −4(1)(1) = −2. Le discriminant est strictement négatif, la règle est donc "toujours du signe de a", c'est à dire toujours positif car a = 1.
Définition : Discriminant d'une équation du second degré Si Δ est strictement positif, alors il y a deux solutions réelles à l'équation du second degré. Si Δ = 0 , alors il y a une solution réelle (répétée). Et si Δ est strictement négatif, alors il n'y a pas de solutions réelles.
Sa solution repose sur la méthode de Cardan dont il était d'ailleurs l'élève. On cherche à résoudre l'équation x^4=px^2+qx+r. Comme pour l'équation de degré 3, un changement de variable permet de ramener toute équation du quatrième degré à une équation de cette forme-là.
L'équation générale (complexe) du quatrième degré a la forme suivante: az4+bz3+cz2+dz+e=0 où a,b,c,d,e ∈ ℂ et a ≠ 0. Remarquons qu'on peut tout de suite supposer que a=1 (en divisant les deux membres par a ≠ 0). Remarquons aussi qu'en remplaçant l'inconnue z par z-b/4 le terme de degré 3 disparaît.
Sciences. La lettre majuscule Δ est souvent utilisée en sciences et mathématiques pour nommer une différence entre deux grandeurs, delta étant l'initiale du mot grec διαφορά (diaphorá), « différence ». L'opérateur laplacien est noté Δ ; l'opérateur nabla prend la forme d'un delta renversé, ∇.
Pour résoudre, il faut 'isoler' le x (nom choisi ici pour l'inconnue) en se 'débarrassant' de ce qui l'entoure. 2x + 8 - 8 = 5 - 8 -----> Pour cela on soustrait 8 aux deux membres, ainsi à gauche il n'y a plus de + 8 (cela s'annule) et à droite apparaît le terme - 8.
La réponse c'est 15 parceque la multiplication est prioritaire. C'est 15. Dans une chaîne d'opération où il y a les signes + et × on doit faire la multiplication ensuite l'addition!
Afin de déterminer le nombre de solutions d'une équation du type f\left(x\right)=k sur I, on utilise le corollaire du théorème des valeurs intermédiaires pour chaque intervalle de I sur lequel la fonction est strictement monotone.
Le conjugué d'un nombre complexe z=a+ib z = a + i b est noté avec une barre ¯¯¯z (ou parfois avec une étoile z∗ ) et est égal à ¯¯¯z=a−ib z ¯ = a − i b avec a=R(z) a = ℜ ( z ) la partie réelle et b=I(z) b = ℑ ( z ) la partie imaginaire.
Tout élément z de s'écrit de manière unique : z = a + ib (a et b réels), donc si z = a + ib et z' = a' + ib', z = z' ⇔ a = a' et b = b'. a + ib (a et b réels) s'appelle la forme algébrique du nombre complexe z. Le réel a s'appelle la partie réelle de z, notée Re(z).
Équation bicarrée,
équation du quatrième degré de forme générale ax4 + bx2 + c = 0, dont la résolution s'obtient en effectuant le changement de variable x2 = y.
Si le trinôme ax2+bx+c admet deux racines distinctes ou confondues, alors leur somme S et leur produit P vérifient : S=a−b et P=ac.
Lorsqu'une équation P(x) = 0 de degré n admet une solution évidente α, on peut factoriser le polynôme associé sous la forme P(X) = (X – α)Q(X) (en divisant P(X) par X – α, ou en mettant X – α en facteur dans chacun des termes Xk – αk dont P(X) – P(α) est combinaison linéaire).
Si le discriminant est strictement négatif, il n'a pas de racine carrée réelle et donc l'équation n'admet pas de solution réelle.
On suppose que pour tout polynôme B tel que deg(B) < n (n ∈ N∗ fixé) et pour tout polynôme A non nul, il existe Q, R ∈ K[X] tels que B = AQ + R avec deg(R) < deg(A). Soit B un polynôme de degré n. Si deg(A) > n = deg(B) alors l'écriture B = A × 0 + B permet de conclure.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
On peut remarquer que √0=0, √1=1, √4=2, √9=3, √16=4, …
x1 et x2 sont les zéros de la fonction f. Pour toute fonction quadratique f(x) est associé un trinôme T(x) = ax2 + bx + c et une équation du second degré à une inconnue ax2 + bx + c = 0. Les zéros de la fonction f sont ses abscisses à l'origine, ce sont les racines du trinôme T(x). a, x1 et x2 pour la forme factorisée.
x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0. On a alors : x0 = −b / (2a).