En élevant les deux expressions au carré Comme \left| x \right| = \sqrt {x^2}, pour résoudre une équation comportant des valeurs absolues, il est possible d'élever tous les termes au carré. L'équation \left| u\left(x\right) \right|= a n'a pas de solution si a\lt 0.
Le résultat d'une valeur absolue est toujours un nombre positif. Comment peut-on simplifier l'écriture |x|? Pour enlever une valeur absolue, il faut toujours faire deux cas : si x est positif alors |x| = x, et si x est négatif alors |x| = - x ( |-9| = - (-9) = 9).
La valeur absolue d'un nombre $x$ se note $|x|$ et rend ce nombre positif. Ainsi, si le nombre est positif, la valeur absolue du nombre est lui même. Si le nombre est négatif, la valeur absolue est l'opposé de ce nombre. $|\pi – 4 | = -(\pi – 4) = 4 – \pi$ car $\pi – 4 < 0$ en utilisant la calculatrice.
Par exemple, puisque le point 2 est à deux unités du point 0, la valeur absolue de 2 est 2.
Si un nombre est positif, la valeur absolue de ce nombre est égale au nombre lui-même. Si un nombre est négatif, la valeur absolue de ce nombre est égale à son opposé.
La fonction valeur absolue est la fonction définie sur ℝ par f(x) = ǀxǀ. Étant donné un réel x, la valeur absolue de x vaut : x si x ≥ 0 ; (−x) si x ≤ 0.
La valeur absolue est la distance par rapport à 0. Entre 0 et -12, la distance est 12.
Par exemple, la valeur absolue de –4 est 4, et celle de +4 est 4. La valeur absolue se note par des barres verticales : ainsi, on écrit : |–4| = |+4| = 4.
Le symbole est « | | » qui se lit : « la valeur absolue de ». La valeur absolue d'un nombre réel correspond à la distance qui sépare ce nombre de l'origine sur une droite numérique. Ainsi, la distance entre 0 et –10 est la même qu'entre 0 et 10.
Pour déterminer les zéros de f, il faut résoudre l'équation f(x)=0. En utilisant la démarche de résolution d'équations vue dans cette à la section 1.4, on doit résoudre : 2|x−1|−3=0⇒2|x−1|=3.
Nous allons travailler sur trois "zones" différentes : Si x ⩽ 1 3 (on aura alors également x < 2), alors f (x) = −x +2+(−3x +1) = −4x +3; Si 1 3 < x < 2, alors f (x) = −x +2+(3x −1) = 2x +1; Si x ⩾ 2, alors f (x) = x −2+(3x −1) = 4x −3.
On résout l'équation en s'aidant de l'axe des réels. Graphiquement, on cherche le point situé à égale distance des points d'abscisses -2 et 4. Ici c'est le point d'abscisse 1. Il n'est pas nécessaire d'appliquer un calcul à cette étape, la résolution graphique suffit.
La résolution d'un système d'équations à deux variables consiste à trouver le point de rencontre entre les équations. Lorsqu'il existe, ce point de rencontre est un couple (x,y) . Cela est possible lorsque les deux droites sont sécantes.
Il faut donc multiplier la première équation par 2. On soustrait ensuite la deuxième équation à la première en faisant attention aux signes : On remplace ensuite le x dans la deuxième équation par la valeur trouvée dans la première équation.
On rappelle que la valeur absolue d'un nombre réel est sa distance à 0 sur la droite numérique. Par exemple, dans l'expression | − 5 | (qui peut être lue comme « la valeur absolue de − 5 »), le nombre − 5 est noté entre deux barres qui sont les symboles de la valeur absolue.
La valeur absolue est celle que le chiffre a par lui-même, et la valeur relative est celle que lui donne le rang qu'il occupe.
la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.
0 donne le même résultat dans les deux cas : la valeur absolue de 0 est 0. Or, donc et donc . Par ailleurs, est la somme de deux réels positifs, et est positif. La notion de distance permet de résoudre des équations et inéquations avec des valeurs absolues.
En effet, le 0 symbolise le néant, le vide, parfois le chaos et le diable. Le chiffre 0 s'utilise pour caractériser l'état de ce qui est sans valeur, gratuit (0 €, par exemple), infinitésimal (0,000000001 par exemple) ou nul.
Par définition, une valeur absolue transforme n'importe quel nombre, positif ou négatif, en un même nombre positif. Elles sont utilisées bien sûr en mathématiques, mais aussi en finance (soldes intermédiaires de gestion), en économie X Source de recherche … sont trois valeurs absolues.
Remarque La fonction valeur absolue est une fonction affine par morceaux. Propriété La fonction valeur absolue est paire. Sa représentation graphique est symétrique par rapport à l'axe des ordonnées.
Résoudre l'équation f(x) = g(x) consiste à déterminer tous les réels x de D qui ont la même image par f et par g. Propriété Graphiquement, les solutions de f(x) = g(x) sont les abscisses des points d'intersection des courbes représentatives de f et de g.
Résoudre graphiquement l'équation f (x) = k, c'est trouver les abscisses des points de la courbe représentative de f qui ont pour ordonnée k. Résoudre graphiquement une inéquation du type f(x) < k, c'est trouver les abscisses des points de la courbe représentative de f d'ordonnée strictement inférieure à k.
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection.