Mettons x2 en facteur, il nous faut résoudre x2 + 1/x2 - 2(x + 1/x) + 1 = 0. On remplace x2 + 1/x2 par X2 - 2, ce qui conduit à l'équation : X2 - 2X - 1 = 0 dont les solutions sont 1 ± √2. Il nous faut maintenant résoudre x + 1/x = 1 ± √2.
Après avoir revu ce vocabulaire relatif aux fonctions, abordons à présent la réciproque d'une fonction. La réciproque d'une fonction est une fonction qui « inverse » cette fonction. Si 𝑓 ( 𝑥 ) = 𝑦 , alors la réciproque de 𝑓 , que nous désignons par 𝑓 , renvoie la valeur initiale de 𝑥 lorsqu'on l'applique à 𝑦 .
Afin de trouver la règle de la fonction réciproque de f, il suffit de poser x=f(y) et d'isoler la variable y. Déterminons si la fonction f(x)=(x−1)3+2 est injective.
La réciproque d'une fonction f s'obtient en intervertissant les valeurs de x et de y puis en isolant y. y .
Pour une équation du second degré sous la forme ax2 + bx + c, le discriminant est la valeur b2 - 4ac. En calculant le discriminant, détermine le nombre de solutions réelles de l'équation 3x2 + 9. En calculant le discriminant, détermine le nombre de solutions réelles de l'équation 4x2 + 4x + 1.
La relation réciproque d'une fonction f de X dans Y est la relation notée f-1, de Y dans X, telle que, pour tous les éléments du domaine de f, si y = f(x), alors x = f -1(y).
Fonction inverse - Points clés
La fonction inverse a pour formule f ( x ) = 1 x et son ensemble de définition est R ∖ { 0 } . La dérivée de la fonction inverse est f ( x ) = − 1 x 2 . Elle est donc décroissante sur son ensemble de définition. La courbe représentative de la fonction inverse est une hyperbole.
Si f(a)=b, alors f ⁻¹(b)=a, autrement dit si a est l'antécédent de b par la fonction f, alors a est l'image de b par la fonction réciproque de f.
La réciproque du théorème de Thalès sert à montrer que deux droites sont parallèles.
Définition de la réciproque
Quand on a une propriété qui s'écrit "Si A alors B", la réciproque serait "Si B alors A". "Si ce mammifère est l'Homme alors ce mammifère peut parler."
Si la fonction valeur absolue est ouverte vers le bas (lorsque a est négatif), l'ouverture de sa réciproque est vers la droite. Dans ce cas, ima(f)=]−∞,k]=dom(f−1).
Le taux d'évolution réciproque d'une valeur vers une valeur est tel que . est exprimé en pourcentage. Il est positif s'il représente une augmentation, négatif s'il représente une diminution. Soit le taux d'évolution d'une valeur vers une valeur .
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Exemples. L'inverse de 2 est 12 parce que 2×12=1.
Il faut inverser le signe d'inégalité si on multiplie ou on divise par un nombre négatif. Soit 2(x+3x+5)≥178. 2 ( x + 3 x + 5 ) ≥ 178.
En mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x−1 ou 1x.
Une application T : X → Y est dite inversible si, pour tout y ∈ Y , l'équation T(x) = y admet une unique solution x ∈ X. (y) = (l'unique x ∈ Xtel que T(x) = y). (y) = x est équivalent `a T(x) = y. = T.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
L'équation de Drake.
Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
Résoudre une inéquation consiste à trouver l'ensemble des valeurs par lesquelles on peut remplacer la variable pour obtenir une inégalité vraie. Par exemple : La solution x=1 est une des solutions de l'inégalité 2x+1<5, car en la remplaçant dans cette dernière on obtient 2×1+1<5 qui est une inégalité vraie.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.