Méthodes de résolution d'inéquations du 1er degré Pour résoudre une inéquation du premier degré d'inconnue , on commence d'abord par développer et réduire les deux expressions à gauche et à droite. On transpose les termes en à gauche et les termes constants à droite pour obtenir une forme réduite a x < − b .
Résoudre une inéquation consiste à trouver l'ensemble des valeurs par lesquelles on peut remplacer la variable pour obtenir une inégalité vraie. Par exemple : La solution x=1 est une des solutions de l'inégalité 2x+1<5, car en la remplaçant dans cette dernière on obtient 2×1+1<5 qui est une inégalité vraie.
Pour résoudre une équation du 1er degré , c'est à dire calculer la valeur de l'inconnue réalisant l'égalité effective des deux membres de l'équation), on a tout intérêt à faire passer, de façon régulière, l'inconnue à gauche du signe égal et les nombres à droite : 5x + 3 = 8 - x ⇔ 5x + x = 8 - 3 ⇔ 6x = 5 ⇔ x = 5/6.
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection.
Solution et ensemble-solution d'une inéquation
Les valeurs particulières de la variable qui vérifient l'inéquation (c'est-à-dire qui rendent l'inégalité vraie) sont appelées les solutions de l'inéquation et l'ensemble de toutes les solutions d'une inéquation est appelé ensemble-solution de l'inéquation.
Ainsi, x doit être égal ou inférieur à 2 pour que - (3x – 12) soit supérieur ou égal à 6. Prises ensemble, la solution de l'inégalité en valeur absolue d'origine |3x - 12| ≥ 6 est x ≤ 2 ou x ≥ 6 ce qui correspond à l'option D.)
Il n'est pas toujours nécessaire de calculer le discriminant Δ. On peut aussi chercher une racine évidente de l'équation du second degré en factorisant le polynôme. Résoudre x2 – 1 = 0 revient à résoudre x2 = 1 soit x = –1 ou x = 1. Résoudre x2 – 2x = 0 revient à résoudre x(x – 2) = 0 soit x = 0 ou x = 2.
Résoudre une inéquation, c'est trouver toutes les valeurs de x qui vérifient cette inégalité. Il s'agit d'un ensemble de valeurs. Les solutions sont tous les nombres strictement inférieurs à . L'ensemble des solutions de l'inéquation est donc l'intervalle : −∞ ; .
Lorsqu'une valeur est interdite, il faut l'indiquer par une double barre : ║. On étudie séparément chacun le signe de tous les facteurs. On utilise la règle des signes : « + par + fait + », « + par - fait - », « - par + fait - » et « - par -fait +».
Une équation est une égalité entre deux expressions littérales contenant une ou plusieurs inconnues. Une inéquation est une inégalité entre deux expressions littérales contenant une ou plusieurs inconnues.
Pour P(x) = ax + b,a 0, P est un polynôme du premier degré et pour P(x) = ax2 + bx + c,a 0, P est un polynôme du seconde degré. Pour k allant de 0 à n, les réels ak sont appelés coefficients de degré k du polynôme P. ! Par convention, le degré du polynôme nul, P(x) = 0 est égal à −∞.
Une équation est dite du premier degré à une inconnue lorsqu'elle peut s'écrire sous la forme a x + b = 0 ax+b=0 ax+b=0, où a et b sont des constantes ( a ≠ 0 a\neq0 a=0).
Les équations du premier degré, c'est-à-dire les équations dont les variables ont des exposants de degré non supérieurs au premier , sont aussi appelées équations linéaires car, lorsqu'elles ont deux inconnues, l'ensemble de leurs solutions forme une droite dans le plan cartésien.
Résoudre graphiquement un système d'inéquations linéaires à deux inconnues, c'est représenter dans un repère l'ensemble des points M dont les coordonnées (x ; y) vérifient simultanément toutes les inéquations du système. Exemple : Résolution graphique du système ⎩ ⎨ ⎧ < + <- - 27 3 4 09 2 3 x y y x .
Substituer les coordonnées d'un point hors de la droite frontière aux variables de l'inéquation. Vérifier si le résultat obtenu est vrai ou faux et hachurer le demi-plan qui correspond à l'ensemble-solution. Le point de coordonnées (0, 0) fait partie de la région-solution, car ses coordonnées vérifient l'inéquation.
Il faut inverser le signe d'inégalité si on multiplie ou on divise par un nombre négatif.
Le symbole « <=> » signifie « équivaut à ». L'expression à gauche du symbole est équivalente à l'expression à droite du symbole. Équivalent ne signifie pas identique ou exactement égal, mais avoir un facteur commun. Le symbole <=> signifie également une relation ou une correspondance entre les expressions gauche et droite.
La règle des signes s'applique au produit de deux nombres relatifs : → Le produit de deux nombres de même signe est positif (– par – ou + par +). → Le produit de deux nombres de signe différent est négatif (+ par – ou – par +).
La solution d’un système de deux inégalités linéaires est une région qui contient les solutions des deux inégalités. Pour trouver cette région, nous allons représenter graphiquement chaque inégalité séparément, puis localiser la région où elles sont toutes deux vraies . La solution est toujours affichée sous forme de graphique. Résolvez le système par graphique.
C'est donc une équation du second degré. Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Multiplications et divisions. - On ne change pas le sens d'une inégalité quand on multiplie (ou on divise) les deux membres par un même nombre positif. - On change le sens d'une inégalité quand on multiplie (ou on divise) les deux membres par un même nombre négatif.
Transformations autorisées sur les inégalités : on peut ajouter ou soustraire un même nombre à chaque membre d'une inégalité : si a≤b a ≤ b , alors a+c≤b+c a + c ≤ b + c .
Pour démontrer une inégalité, on peut s'appuyer sur une des inégalités déjà connues et appliquer des opérations qui conservent ou renversent l'inégalité. Pour tout x ∈ R, −1 ≤ sin( x ) ≤ 1 et −1 ≤ cos( x ) ≤ 1. Pour tout x ∈ R, e x > 0.