Le point de rencontre des trois médianes de n'importe quel triangle se nomme le centre de gravité.
Il y a trois médianes dans un triangle. Le point de rencontre de ces médianes se nomme le centre de gravité du triangle.
Les trois médianes d'un triangle sont concourantes. Leur point d'intersection est l'isobarycentre des trois sommets, souvent appelé « centre de gravité du triangle ».
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Les bissectrices intérieures sont concourantes, leur point d'intersection étant le centre du cercle inscrit dans le triangle.
Les trois médianes d'un triangle sont concourantes en un point appelé le centre de gravité du triangle. Dans un triangle, une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle.
Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Orthocentre. Les trois hauteurs d'un triangle sont concourantes. Leur point d'intersection H, est nommé orthocentre du triangle. On considère l'homothétie de centre le centre de gravité du triangle et de rapport –2.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
2/ Médianes d'un triangle
Définition Dans un triangle, une médiane est une droite passant par un sommet et le milieu du côté opposé à ce sommet. Illustration Trace un triangle RTS quelconque puis construis ses trois médianes. Propriété Dans un triangle, les médianes sont concourantes.
Comme les trois hauteurs, les trois médianes d'un triangle sont concourantes. On trace la droite passant par B et par le milieu de \left[ AC \right] ainsi que la droite passant par C et par le milieu du segment \left[ AB \right]. On obtient les trois médianes.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Placer la pointe sèche du compas sur le sommet de l'angle et tracer un arc qui coupe les deux côtés de l'angle. Placer la pointe sèche du compas sur une intersection de l'arc de cercle et d'un côté de l'angle. Tracer un nouvel arc dans l'ouverture de l'angle. Refaire l'opération à partir de l'autre intersection.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure.
La médiatrice d'un segment est la droite qui coupe ce segment en son milieu perpendiculairement. Dans un triangle, les médiatrices sont concourantes en un point appelé centre du cercle circonscrit au triangle. La bissectrice d'un angle est la demi-droite qui partage cet angle en deux angles de même mesure.
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Les hauteurs A,B,C sont concourantes en un point h appelé orthocentre du triangle abc.
Le cercle d'Euler (1707-1783) passe par les neuf points suivants : – les trois milieux des côtés du triangle A' : B' et C' ; – les trois pieds des hauteurs hA; hB et hC ; – les trois points d'Euler eA; eB et eC ; milieux des segments [AH], [BH] et [CH] où H est l'orthocentre du triangle ABC.
médiatrice n.f. Droite perpendiculaire à un segment et passant par son milieu.
orthocentre , subst. masc. Point de rencontre des trois hauteurs d'un triangle, des quatre hauteurs d'un tétraèdre.
Tout point situé sur la médiatrice d'un segment se trouve à égale distance de chacune des extrémités de ce segment. C'est pourquoi les sommets du triangle se trouvent tous sur un même cercle. C'est la droite qui coupe un angle en deux angles égaux.
Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle.
Dans un triangle ABC isocèle en A, la médiane, la hauteur et la bissectrice toutes issues de A ainsi que la médiatrice de la base [BC] sont confondues. Cette droite est également un axe de symétrie du triangle (et le seul, sauf si le triangle est équilatéral).
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
Propriété 4b: Si un triangle est isocèle, alors ses angles à la base ont même mesure.