Si une fonction est décroissante et dérivable sur un intervalle alors sa dérivée est négative sur cet intervalle. Si une fonction est constante et dérivable sur un intervalle alors sa dérivée est nulle sur cet intervalle.
Dire « la dérivée de f s'annule » signifie qu'il existe un réel a tel que f′(a)=0. Dire « la dérivée de f est nulle » signifie que pour tout réel x, f′(x)=0.
Si la dérivée est d'abord positive , s' annule puis devient négative la fonction passe par un « maximum ». Si la dérivée est d'abord négative , s' annule puis devient positive la fonction passe par un « minimum ». Point d'inflexion : L'annulation de la dérivée sans changement de signe correspond à un point d'inflexion.
On parle de point d'inflexion pour signifier que la courbe traverse sa tangente en ce point. Dans le cas cartésien, y = f(x), le phénomène se produit lorsque la dérivée seconde f ", dérivée de la dérivée, s'annule en changeant de signe (changement de concavité), cas bien connu des élèves de Terminale.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0).
De manière plus rigoureuse, on dit qu'une fonction définie sur A sous-ensemble de ℂ, par exemple, est une fonction nulle (ou est la fonction nulle de A) si c'est la restriction à A de la fonction nulle précédente (autrement dit, si ∀ x ∈ A, ƒ(x) = 0 et si ƒ n'est pas définie en dehors de A).
Supposons que j'aie une fonction définie par f(x)=... (une formule en x) pour x différent de 0, et f(0)=0. Puis-je appliquer ce résultat en disant : ⋆ "puisque f(0)=0, la fonction f est nulle en 0, or la dérivée de la fonction nulle est nulle, donc f est dérivable en 0 et f'(0)=0" ?
Pour déterminer les abscisses des extremums d'une fonction, on cherche les points où la dérivée s'annule en changeant de signe. Pour déterminer les abscisses des points d'inflexion de sa courbe, on cherche les points où la dérivée seconde s'annule en changeant de signe.
A retenir : a est l'abscisse d'un point d'inflexion de la courbe si la dérivée seconde s'annule en changeant de signe en a. Si la dérivée première s'annule en changeant de signe en a, alors a est l'abscisse d'un extremum.
Lorsqu'une fonction n'est pas définie pour une valeur, le nombre dérivé n'existe pas et l'affaire est pliée : il est évident que la fonction inverse n'est pas dérivable en 0 puisqu'elle n'y est pas définie. Là où ça se complique, c'est lorsque la fonction est définie en un point mais qu'elle n'y est pas dérivable.
Soit f : [a, b] → R une fonction. (1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a.
Si f est dérivable en a alors la fonction f est continue en a. Si f est dérivable sur un intervalle I alors la fonction f est continue sur I. Remarque : La réciproque de ce théorème est fausse. Pour s'en rendre compte, on peut s'appuyer sur une représentation graphique.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
La dérivée de 1 est nulle, car c'est une constante.
Etudier le signe de f'(x) sur l'intervalle I
A l'inverse, si f'(x) est inférieure ou égale à 0, alors f est décroissante sur I. Pour connaître le signe de f', il suffit simplement de déterminer les valeurs de x pour lesquelles f'(x) s'annule, or on sait construire le tableau de signe d'une fonction de type ax + b.
La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f ''(x) ≥ 0 pour tout x de I. La fonction f est concave sur I si sa dérivée f ' est décroissante sur I, soit f ''(x) ≤ 0 pour tout x de I.
Le point d'intersection de deux droites distinctes est le point où elles se rencontrent ou se coupent. C'est le couple de valeurs de ? et ? où les droites se coupent sur le graphique et qui vérifie les équations des deux droites.
Se dit d'un point d'une courbe où la demi-tangente à droite et la demi-tangente à gauche n'ont pas le même support.
On dit qu'une fonction f est croissante ssi pour x et y dans le DD de f , si on a x ≤ y, on a aussi f (x) ≤ f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x ≤ y ⇒ f (x) ≤ f (y).
Si une fonction "f" est dériable sur un intervalle I alors: Si sa dérivée est positive sur cet intervalle alors la fonction y est croissante. Si sa dérivée est négative sur cet intervalle alors la focnction y est décroissante. Si sa dérivée est nulle sur cet intervalle alors la fonction y est constante.
1) Calculer un+1−un. 2) Trouver le signe de un+1−un. Si pour tout entier naturel n, un+1−un⩾0 alors la suite (un) est croissante. Si pour tout entier naturel n, un+1−un⩽0 alors la suite (un) est décroissante.
3) La fonction nulle est croissante mais n'est pas strictement croissante. 1) "une fonction qui est croissante ou décroissante sur I" est la définition de fonction monotone.
Une fonction est constante si et seulement si son image est réduite à un singleton. Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses. La dérivée d'une fonction constante est nulle.
Pour I ⊂R un intervalle quelconque, la fonction identiquement nulle sur I est aussi une fonction polynomiale. Le polynôme nul n'a pas de degré, ou si l'on veut, il a n'importe quel degré.