Propriété : Les droites d'équation ax + by + c = 0 et a'x + b' y + c' = 0 sont parallèles si et seulement si ab'− a'b = 0. ( )= 0 soit encore : ab'− a'b = 0 . Définition : On appelle base du plan tout couple de deux vecteurs non colinéaires.
Les vecteurs ⃑ 𝐴 et ⃑ 𝐵 sont parallèles si, et seulement si, ce sont des multiples scalaires l'un de l'autre : ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est un nombre réel non nul.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur.
Deux droites sont perpendiculaires si elles se coupent en un point et si leurs vecteurs directeurs sont orthogonaux. Si deux droites parallèles se coupent en un point, elles se chevauchent complètement. Dans ce cas, les deux droites sont confondues.
On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur.
2) Les vecteurs u, v et w sont non coplanaires ssi ils forment une base de l'espace, c'est à dire ssi au+bv+cw=0 implique a=b=c=O. Donc, on peut écrire le système d'équation à trois inconnues orrespondant à au+bv+cw=0.
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
1. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. 2. Si deux droites sont parallèles, alors toute droite perpendiculaire à l'une est perpendiculaire à l'autre.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs. En effet : α = π et cos π = - 1 .
Un vecteur libre caractérise donc une grandeur, une direction et un sens mais son origine ou son extrémité peut être fixée librement. Tout vecteur libre peut être représenté par un élément quelconque de l'ensemble des vecteurs géométriques qu'il désigne.
Définition 1.
Deux droites ont la même direction si et seulement si elles sont parallèles ou confondues. On dit que deux vecteurs et sont colinéaires lorsqu'ils ont la même direction. Par conséquent, deux droites qui n'ont pas la même direction sont sécantes.
Elles se situent toujours à la même distance l'une de l'autre. On trace des droites parallèles en utilisant une règle et une équerre. Deux droites sont parallèles quand elles n'ont aucun point en commun. Même si on les prolonge, elles ne se coupent jamais.
Toute droite du plan admet une équation de la forme ax + by + c = 0 appelée équation cartésienne. Le vecteur est un vecteur directeur de cette droite.
Deux droites sont parallèles si elles vont dans la même direction et si l'écart qui les sépare est constant. Elles ne se croisent jamais. Pour tracer des droites parallèles, il faut une règle et une équerre.
On place l'angle droit de l'équerre sur la droite. On trace la seconde droite. On prolonge la seconde droite avec la règle. Si une droite est perpendiculaire à plusieurs droites, alors celles-ci sont parallèles entre elles.
Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
Propriété : Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .
Définitions. On apelle vecteur un segment de droite orienté noté . A est l'origine du vecteur et B son extrémité. On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
Un vecteur, généralement noté →u , est un objet mathématique qui possède à la fois une grandeur et une orientation (soit une direction et un sens). Tout comme son écriture l'indique, le vecteur est en fait une droite qui possède un point de départ et une flèche pour indiquer son point d'arrivée et sa direction.