P : Si, dans un triangle, une droite passe par les milieux de 2 côtés, alors elle est parallèle au troisième côté. P : Si deux droites sont parallèles, alors toute perpendiculaire à l'une est perpendiculaire à l'autre.
Définition: Définition : Deux droites distinctes sont dites parallèles si elles n'ont aucun point en commun. Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites qui ne sont pas parallèles sont sécantes. Attention : Deux droites qui ne se coupent pas sur une figure, ne sont pas forcément parallèles.
Deux droites (AB) et (CD) sont parallèles lorsque les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
si deux droites sont perpendiculaires à une même troisième droite, alors elles sont parallèles. si deux droites sont perpendiculaires à une même troisième droite, alors elles sont parallèles.
Si deux droites sont parallèles alors toute droite parallèle à l'une est parallèle à l'autre. On sait que (d) // (d')et que (d) // (d'') donc d'après la propriété 1, (d') // (d'').
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des
Droites perpendiculaires :
Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 120 = 60°. Propriété 2: Dans un triangle rectangle, la somme des mesures des angles reposant sur l'hypoténuse est égale à 90°. Propriété 3: Dans un triangle équilatéral, les angles sont égaux et mesurent 60°.
(Géométrie) Angle de valeur égale à 180 degrés ou de 1/2 de tour.
Les angles complémentaires sont des angles dont la somme des mesures est égale à 90°. Lorsque la somme des mesures de deux angles a une valeur de 90°, on qualifie ces angles de complémentaires.
Conclusion : Le théorème de Pythagore s'applique au triangle rectangle seulement et permet de calculer un côté de celui-ci lorsque l'on connaît les deux autres.
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.
Le théorème de Thalès permet donc de calculer des distances dans une configuration géométrique comportant des droites parallèles. Ce théorème implique donc qu'il ne peut pas être utilisé pour les triangles rectangles. Si un triangle est rectangle, c'est qu'il ne possède pas de droites parallèles.
Avec la reciproque de Thalès on peut savoir si les deux droites sont parallèles. Mais seulement si les cotes des triangles sont proportinnels deux a deux. Pythagore ce n'est qu'avec un triangle rectangle, il sert a connaitre la mesure d'un côté.
Un parallèle est un cercle imaginaire. Sa longueur est donc la circonférence du cercle, dont la formule générale à connaître est : l=2πr, avec r le rayon.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Définition : Quand deux droites ne sont pas sécantes (même en les prolongeant à l'infini), on dit qu'elles sont parallèles. Quand deux droites n'ont pas de point d'intersection (même en les prolongeant à l'infini), on dit qu'elles sont parallèles.
Segments de droites de même direction. Des segments de droites parallèles ne pourront jamais se croiser, même si on les prolonge à l'infini.
Si deux droites sont parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. Donc (BC) et ( DC|CD) sont perpendiculaires. D'après l'énoncé, la droite (BC) est perpendiculaire à la droite (AB) et la droite (DC) est parallèle à la droite (AB). Les droites (BC) et (DC) sont donc perpendiculaires.
Angle nul : Angle qui mesure 0 degré. Angle aigu : Angle supérieur à 0 degré et inférieur à 90 degrés. Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés.