Si deux polynômes sont premiers entre eux, on dit aussi que l'un est premier avec l'autre. De la même façon, on dit que polynômes P 1 , P 2 , . . . , P n sont premiers entre eux dans leur ensemble si leur PGCD est égal à 1.
Deux polynômes de sont égaux si et seulement si tous leurs coefficients sont égaux. En particulier, un polynôme est nul si et seulement si tous ses coefficients sont nuls.
On détermine le PGCD des polynômes A et B par le théorème moteur de l'algorithme d'Euclide, utilisant les divisions euclidiennes des polynômes. On fait la division de A par B : On a obtenu A ( X ) = X 2 − X − 2 ) B ( X ) + X 2 + 4 X − 5 .
Le coefficient dominant d'un polynôme est le coefficient de son monôme de plus haut degré. Le coefficient constant d'un polynôme est le coefficient de son monôme de degré 0. Soit le polynôme P(x)=3x2-5x+7. Son coefficient dominant est 3 et son coefficient constant est 7.
Si est un polynôme non nul, l'expression a n X n où est le degré de (i.e. a n ≠ 0 ), est appelée terme dominant de et notée d o m ( P ) . Le coefficient est appelé coefficient dominant du polynôme . Un polynôme est dit unitaire si son coefficient dominant est égal à 1.
Un polynôme est une expression constituée d'une somme de monômes. Un polynôme à une variable est un polynôme qui ne contient qu'une seule variable. On dit du facteur constant d'un monôme que c'est son coefficient.
Diviseurs et divisibilité dans l'ensemble des polynômes
Soient les polynômes , et . Si P = Q × R , alors et sont des diviseurs de . Par exemple, 2 x ( x + 3 ) = 2 x 2 + 6 x . Donc et sont des diviseurs de 2 x 2 + 6 x .
L'algorithme part du constat suivant : le PGCD de deux nombres n'est pas changé si on remplace le plus grand d'entre eux par leur différence. Autrement dit, pgcd(a, b) = pgcd(a−b, b). Par exemple, le PGCD de 252 et 105 vaut 21, mais c'est aussi le PGCD de 252 − 105 = 147 et 105.
561÷357 (à la calculatrice touche ÷R) on obtient 1 en quotient et 204 en reste. Après, on continue : On divise le plus petit des deux nombres de la division précédente par le reste de cette division. --> Le dernier reste non nul est 51 donc PGCD (357 ; 561) = 51.
Pour démontrer l'unicité d'un élément satisfaisant une propriété, la méthode la plus courante consiste à introduire deux variables pour lesquelles la propriété est satisfaite (« Soit x et x′ tel que … »), puis à démontrer l'égalité entre ces deux variables.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Proposition : Si a1,…,ap a 1 , … , a p sont des racines distinctes de P , alors (X−a1)⋯(X−ap) ( X − a 1 ) ⋯ ( X − a p ) divise P . Un polynôme de degré n≥0 n ≥ 0 admet au plus n racines.
(b) Produit de polynômes
Le produit de deux polynômes est le polynôme obtenu en multipliant chaque terme de l'un par chaque terme de l'autre. Par exemple, (−x3+2x2+1)(3x−2)=−3x4+6x3+3x+2x3−4x2−2=−3x4+8x3−4x2+3x−2.
Multiplier deux polynômes implique l'utilisation des règles sur les puissances et la distributivité de la multiplication sur l'addition. Diviser deux monômes, revient à diviser les coefficients, puis à diviser les variables semblables en soustrayant les exposants.
Tout polynôme P ∈ R[X] peut se factoriser sous la forme P = α(X − a1)... (X − ak)Q1 ... Qp, où α est le coefficient dominant de P, les ai sont les racines réelles du polynôme P, et les polynômes Qi sont des polynômes de degré 2 à discriminant strictement négatif.
Soient a non nul et b, deux éléments d'un anneau intègre. Si, pour tout élément c, a divise bc implique que a divise c, alors a et b sont premiers entre eux. En effet, soit d un diviseur commun à a et b : on peut écrire a = cd et b = ed. Par hypothèse, comme a divise bc, on a que a divise c donc d est inversible.
Deux nombres entiers sont dits premiers entre eux lorsqu'il n'admette aucun diviseur commun, sinon l'unité. Par exemple 5 et 12 sont premiers entre eux, mais pas 12 et 15 qui admettent 3 comme diviseur commun.
Nombre premier : définition
Rappelons qu'un nombre admet un nombre entier comme diviseur s'il existe un autre nombre entier tel que n = m k . Autrement dit, un diviseur de est un nombre entier par lequel nous pouvons diviser sans avoir de reste. est un nombre premier, comme ses seuls diviseurs sont et .
La divisibilité est une propriété qui indique qu'un nombre peut être entièrement divisé par un autre nombre, c'est-à-dire sans reste. 54÷6=9 reste 0, 54 ÷ 6 = 9 reste 0 , donc 54 est divisible par 6. 6. 22÷5=4 reste 2, 22 ÷ 5 = 4 reste 2 , donc 22 n'est pas divisible par 5.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Le degré du polynôme nul est, soit laissé indéfini, soit défini comme étant négatif (habituellement, −1 ou −∞). Comme toute valeur constante, la valeur 0 peut être considérée comme un polynôme (constant), appelé le polynôme nul. Il n'a aucun terme non nul et ainsi, de façon rigoureuse, il n'a pas de degré non plus.
Les exposants dans les monômes, les binômes, les trinômes et les polynômes sont toujours des nombres naturels. 3x1/2+2x−4 3 x 1 / 2 + 2 x − 4 n'est pas un polynôme puisque l'exposant de la variable x n'est pas un nombre naturel.
Définition. ( Polynôme caractéristique d'une matrice ) Si f : E → E est un endomorphisme, le polynôme caractéristique χf de f est le polynôme caractéristique d'une matrice Mat(f; B) pour une base B de E. Autrement dit, χf = det(f − Xid).
Un monôme est composé de deux parties un facteur numérique que l'on appelle coefficient et un produit de facteurs littéraux que l'on appelle partie littéral -6x3 ; 5xy Le degré d'un monôme est la somme des exposants de toutes ses lettres.