Exemple : Soit un triangle ABC tel que AB = 5 cm, BC = 12 cm et AC = 13 cm. Montrer que le triangle ABC est rectangle. L'égalité de Pythagore est vérifiée, le triangle ABC est donc rectangle en B car [AC] est l'hypoténuse. (On parle de réciproque du théorème de Pythagore).
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Dans un triangle rectangle ABC, où l'angle droit est B, l'hypoténuse est donc le côté AC. Pythagore a ainsi théorisé que le carré de la longueur de l'hypoténuse est égal à la somme des carrés des 2 autres côtés (soit dans notre exemple, AC2 = AB2 + BC2).
D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC². Alors, le triangle ABC est rectangle en A.
AB2+BC2=AC2 A B 2 + B C 2 = A C 2 donc d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.
Pour montrer qu'un triangle est rectangle, il y a au moins 3 méthodes. - Méthode 1 : utiliser les propriétés des droites parallèles et des droites perpendiculaires pour prouver qu'il y a un angle droit. - Méthode 2 : utiliser la caractérisation de Pythagore et l'égalité de Pythagore.
Propriété 2: Dans un triangle rectangle, la somme des mesures des angles reposant sur l'hypoténuse est égale à 90°. Propriété 3: Dans un triangle équilatéral, les angles sont égaux et mesurent 60°.
On peut dire que ABCD est un parallélogramme car ses diagonales [AC] et [BD] ont le même milieu I. De plus, ABCD est un rectangle car il a un angle droit en B.
Théorème : Si le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle. Si le carré de l'hypoténuse n'est pas égal à la somme des carrés des deux autres côtés, alors le triangle n'est pas rectangle. I. Le théorème de Thales pour calculer une longueur - sens direct.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Selon la légende, Thalès aurait découvert ce théorème en calculant la hauteur d'une pyramide. Pour se faire, le mathématicien calcule l'ombre de la pyramide au sol puis, avec l'aide d'un bâton, calcule également l'ombre du bâton. C'est ainsi qu'il aurait pu calculer les dimensions de la pyramide d'Egypte.
2) Comment démontrer qu'un quadrilatère est un rectangle ? Propriété : Si un quadrilatère possède trois angles droits, alors c'est un rectangle. Propriété : Si un parallélogramme possède un angle droit, alors c'est un rectangle.
Dans le quadrilatère ABCD, (AB) // (CD) et (AD) // (BC) donc ABCD est un parallélogramme. qui se coupent en leur milieu alors c'est un parallélogramme. Dans le quadrilatère ABCD, les diagonales [AC] et [BD] se coupent en leur milieu.
Et donc ABCD est un rectangle. Soit M le point d'intersection des diagonales (AC) et (BD). Comme BAM=BAC=45° B A M = B A C = 45 ° et ABM=ABD=45° A B M = A B D = 45 ° ; on a donc AMB=90° A M B = 90 ° .
Si θ = 0 (π), alors les points A, B et C sont alignés. Si θ = π 2 (π), alors le triangle ABC est rectangle en A.
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
Un triangle est un polygone particulier possédant trois côtés. La somme de ses angles vaut 180 ° 180\degree 180°. Un polygone est une figure géométrique fermée délimitée par différents segments. Un polygone est dit régulier si l'ensemble de ses angles sont égaux les uns aux autres.