Un triangle rectangle est un triangle dont deux côtés des trois côtés sont perpendiculaires, formant un angle droit de 90°.
En trigonométrie donc, le grand côté du triangle est l'hypoténuse et les deux autres côtés sont appelés cathètes. Notons par ailleurs que la somme des angles de tout triangle mesure 180°. De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. une symétrie axiale conserve l'orthogonalité. une symétrie centrale conserve l'orthogonalité.
Réciproque du théorème de Pythagore: "Un triangle est rectangle si le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des 2 autres côtés."
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
Énoncé de la Réciproque de Pythagore:
Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et ce diamètre est son hypoténuse. Soit \Gamma le cercle circonscrit au triangle ABC et AB un diamètre de \Gamma. Démontrer que le triangle ABC est rectangle.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
[BA] et [ BC ] . Si ABC est rectangle en B alors AC2 =BA2 BC2 . Autrement dit : « Dans un triangle rectangle, l'hypoténuse au carré est égale à la somme des carrés des côtés de l'angle droit ».
Si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors ce triangle est un triangle rectangle. Si BC² =AB² +AC² , alors ABC est rectangle en A. Si on connaît les longueurs des trois côtés d'un triangle, on peut prouver qu'il est rectangle.
Justifions que le triangle ABM est rectangle: Les points M et B appartiennent à la droite d. Cette dernière est orthogonale au plan P et par conséquent à toutes les droites de ce plan . Donc la droite ( MB ) est orthogonale à la droite ( AB ) ( qui appartient à P ) . Ainsi: le triangle ABM est bien rectangle en B .
Conclusion : Le théorème de Pythagore s'applique au triangle rectangle seulement et permet de calculer un côté de celui-ci lorsque l'on connaît les deux autres.
Définition : dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (appelés cathètes). Ainsi, soient a et b les cathètes et c l'hypothénuse, on a a 2 + b 2 = c 2 .
Si un triangle est rectangle alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si, dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle.
Réponse. le thm de thales sert a montrer que les droites d'un triangles rectangle sont parraleles et le thm de pytagore sert a trouver la longueur d'un cote d'un triangle rectange.
P : Si deux angles correspondants déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles. P : Si deux angles alternes-internes déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles.
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Dans le cas d'un triangle rectangle, les côtés adjacents à l'angle droits constituent une base et sa hauteur. Par conséquent, pour calculer l'aire d'un triangle rectangle, il faut multiplier les longueurs des deux côtés adjacents à l'angle droit et diviser le résultat par 2.
On considère le point C de coordonnées (xB;yA). Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C. D'après le théorème de Pythagore : AB2=AC2+BC2.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Théorème de Thalès : Si, deux droites parallèles coupent deux droites sécantes alors elles déterminent deux triangles dont les côtés correspondants ont des longueurs proportionnelles. Remarque 1 : Cela revient à dire que les triangles formés sont semblables.
Utiliser la trigonométrie pour trouver les longueurs des côtés d'un triangle rectangle. On peut utiliser les lignes trigonométriques pour calculer la longueur de l'un des côtés d'un triangle rectangle.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.