Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
Si l'écart-type est faible, cela signifie que les valeurs sont peu dispersées autour de la moyenne (série homogène) et inversement (série hétérogène).
Pour deux ensembles de données ayant la même moyenne, celui dont l'écart-type est le plus grand est celui dans lequel les données sont les plus dispersées par rapport au centre. L'écart-type est égal à 0 zéro si toutes les valeurs d'un ensemble de données sont les mêmes (parce que chaque valeur est égale à la moyenne).
La variance (ou fluctuation) est la moyenne arithmétique des carrés des écarts à la moyenne. L'écart-type, noté , est la racine carrée de la variance.
écart type n. m. Définition : Mesure de la dispersion d'une série d'observations statistiques par rapport à leur moyenne, qui s'obtient en extrayant la racine carrée de la variance.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
Plus la valeur du coefficient de variation est élevée, plus la dispersion autour de la moyenne est grande. Il est généralement exprimé en pourcentage. Sans unité, il permet la comparaison de distributions de valeurs dont les échelles de mesure ne sont pas comparables.
Pour calculer l'écart-type pour un échantillon, utilisez les formules de cette catégorie : STDEV. S, STDEVA et STDEV. 2. Pour calculer l'écart-type pour une population entière, utilisez les formules de cette catégorie : STDEV.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
L'expression fréquence = valeur n'est jamais ambigüe. Si valeur est un nombre entier positif, il s'agit de la fréquence absolue, c'est-à-dire l'effectif de la classe. Si valeur est un nombre compris entre 0 et 1 ou un pourcentage, il s'agit de la fréquence relative.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
La colonne Pourcentage cumulé montre la fréquence cumulée, divisée par le nombre total d'observations (25, dans ce cas). On multiplie ensuite le résultat par 100. Ce calcul donne le pourcentage cumulé de chaque intervalle.
La médiane est considérée comme le second quartile (Q2). L'écart interquartile est la différence entre le quartile supérieur et le quartile inférieur. L'écart semi-interquartile est la moitié de l'écart interquartile. Lorsque le jeu de données est petit, il est simple de trouver les valeurs des quartiles.
Plus le coefficient de variation est faible, plus les données statistiques sont regroupées autour de la moyenne et plus il est grand, plus les données sont dispersées. On considère qu'une distribution de données est homogène, lorsque c.v. est égal ou inférieur à 15%.
– Si la valeur de la covariance est de signe négatif cela signifie que les variables varient en sens inverse : les sujets qui ont des valeurs fortes sur une des deux variables auront tendance à avoir des valeurs faibles sur l'autre variable.
Les indices de dispersion : donnent des renseignements sur la dispersion et la variabilité dans un groupe, à savoir à quel point les valeurs de la distributions sont homogène ( si les valeurs sont proches de la moyenne ou pas) et hétérogène ( si écart entre la moyenne et les valeur extrême est trop important).
L'écart-type d'une série statistique nous renseigne sur la dispersion autour de la moyenne des valeurs de cette série. Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne.
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous.
L'incertitude-type donne un regard critique sur une série de mesures. On définit avec elle des conventions d'écriture, elle permet d'établir un intervalle de confiance. L'écart relatif permet de comparer le résultat de la mesure obtenu à une valeur attendue.
En divisant par N-1, on obtient un estimateur (ou une estimation) de la variance de la population, à partir de l'échantillon, supposé pris au hasard. On appelle cet estimateur la "variance d'échantillon" (d' et non de l' - signification différente).
Elle permet de caractériser la dispersion. des valeurs par rapport à la moyenne. Ainsi, une distribution avec une même espérance et une variance plus grande apparaîtra comme plus étalée. Le fait que l'on prenne le carré de ces écarts à la moyenne évite que des écarts positifs et négatifs ne s'annulent.
La fonction ECARTYPE. PEARSON part de l'hypothèse que les arguments représentent l'ensemble de la population. Si vos données ne représentent qu'un échantillon de cette population, utilisez la fonction ECARTYPE pour en calculer l'écart type. S'il s'agit d'échantillons de taille importante, les fonctions ECARTYPE.