Un point M(x;y) appartient à la courbe représentative de f si et seulement si x∈Df et f\left(x\right) = y. On considère la fonction f telle que, pour tout réel x, f\left(x\right) = x^2+4x-1.
Un point M(xM;yM) appartient à une droite si et seulement si ses coordonnées vérifient une équation de la droite. Soit une droite \left(d\right) d'équation cartésienne 4x-y+3 = 0.
Pour montrer qu'un point appartient à un plan donné par une équation cartésienne, on s'assure que ses coordonnées vérifient l'équation. Pour passer d'une équation cartésienne à une équation paramétrique d'un plan, on exprime une variable en fonction des 2 autres qu'on appelle t et t′.
On dit qu'un point A appartient à la droite (d) si la droite (d) passe par le point A. On dit qu'un point B n'appartient pas à la droite (d) si la droite (d) ne passe pas par le point B.
Preuve : La tangente (T) au point A a pour équation y = mx + p et a pour coefficient directeur f '(a). En remplaçant, (T) : y = f '(a)x + p. Le point A(a, f(a)) appartient à cette tangente donc ses coordonnées vérifient l'équation de (T) soit , ce qui donne .
Si l'on cherche une tangente parallèle à une droite. Lorsque f est dérivable sur un intervalle I contenant le réel a, la tangente à la courbe représentative de f au point d'abscisse a admet pour équation : y= f'\left(a\right) \left(x-a\right) + f\left(a\right) .
Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point.
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Ces deux points sont appelés les extrémités. Définition/Explication (ne pas apprendre) Si l'on considère une droite (d) , un point A placé sur (d) partage cette droite en deux demi-droites. Représentation On représente une demi-droite par une ligne droite bordée d'un trait.
Un point M est sur le segment [AB] si et seulement si ABk AM = avec 0 < k < 1 . donc si k > 0 . De plus , AM doit être plus petite que AB donc k < 1 .
Intersection d'une droite et d'un plan
Il est clair que l'intersection est obtenue en résolvant un système de 3 équations à 3 inconnues. Soit la droite D donnée par { u x + v y + w z = d u ′ x + v ′ y + w ′ z = d ′ et le plan P donné par { x = a + λ u 1 + μ u 2 y = b + λ v 1 + μ v 2 z = c + λ w 1 + μ w 2 .
Définition 1 : Un plan est défini par trois points non-alignés. Autrement dit, soit trois points A, B et C non-alignés. Ces trois points définissent un plan que l'on appellera (ABC). Définition 2 : Si une droite (D) contient deux points A et B d'un plan (P), alors cette droite est incluse dans ce plan.
Si les points A, B et C appartiennent à la même droite, on peut en conclure qu'ils sont alignés. Les points A, B et C appartiennent à la même droite ; ils sont donc alignés.
Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.
"Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de ? ? en divisant par deux chacune les distances horizontales et verticales entre ? et ? .
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur. Donc, si le vecteur →u est colinéaire au vecteur →v , alors il existe un scalaire k tel que →u=k→v u → = k v → .
En géométrie euclidienne, l'alignement peut être caractérisé par un cas d'égalité de l'inégalité triangulaire : trois points sont alignés si l'un d'entre eux (que l'on peut noter B) appartient au segment joignant les deux autres (notés A et C), autrement dit si les distances satisfont la relation AB + BC = AC.
Trigonométrie Exemples. La valeur exacte de sin(30°) sin ( 30 ° ) est 12 .
A retenir : a est l'abscisse d'un point d'inflexion de la courbe si la dérivée seconde s'annule en changeant de signe en a. Si la dérivée première s'annule en changeant de signe en a, alors a est l'abscisse d'un extremum.
Se dit d'un point d'une courbe où la demi-tangente à droite et la demi-tangente à gauche n'ont pas le même support.