On considère le point C de coordonnées (xB;yA). Les axes du repère sont perpendiculaires donc le triangle ABC est rectangle en C. D'après le théorème de Pythagore : AB2=AC2+BC2.
Si on nomme A, B et C les longueurs des côtés du triangle, avec A la plus grande valeur, on a : Si A²=B²+C², alors le triangle est rectangle (réciproque du théorème de Pythagore).
Réciproque du théorème de Pythagore: "Un triangle est rectangle si le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des 2 autres côtés."
- Méthode 1 : utiliser les propriétés des droites parallèles et des droites perpendiculaires pour prouver qu'il y a un angle droit. - Méthode 2 : utiliser la caractérisation de Pythagore et l'égalité de Pythagore. - Méthode 3 : utiliser le théorème du cercle circonscrit.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors ce triangle est un triangle rectangle. Si BC² =AB² +AC² , alors ABC est rectangle en A. Si on connaît les longueurs des trois côtés d'un triangle, on peut prouver qu'il est rectangle.
Réciproque du théorème de Pythagore Si dans un triangle le carré de la longueur d'un côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle. Propriété (S2) Si deux triangles sont semblables alors les longueurs des côtés opposés aux angles égaux sont proportionnelles.
Si un triangle est rectangle alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si, dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle.
Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle. Si un parallélogramme a un angle droit alors c'est un rectangle. Si les diagonales d'un parallélogramme sont de la même longueur alors c'est un rectangle.
SI dans le triangle ABC ([BC] étant le plus grand côté) AB² + AC² = BC². Exemple : ABC est un triangle tel que AB=5cm, AC = 12 cm et BC = 13cm. Puisque AB² + AC² = BC², Alors d'après la réciproque du théorème de Pythagore ABC est rectangle en A.
Repère orthogonal et orthonormal
Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
EXOMATH, Repère: calculer une longueur
Attention, la formule qui permet de calculer une longueur dans un repère n'est valable que dans un repère orthonormé (axes perpendiculaires et graduation identique sur les deux axes). A B = √ ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B. De plus AB = BC donc ABC est isocèle en B. Conclusion : ABC est un triangle isocèle et rectangle en B.
Quand on coupe deux droites sécantes au point A par deux droites parallèles (MN) et (BC), on obtient deux triangles ABC et AMN. Le théorème de Thalès énonce que, dans ce type de configuration, les longueurs des côtés d'un triangle sont proportionnels aux côtés associés de l'autre triangle.
Dans le cas d'un triangle rectangle, les côtés adjacents à l'angle droits constituent une base et sa hauteur. Par conséquent, pour calculer l'aire d'un triangle rectangle, il faut multiplier les longueurs des deux côtés adjacents à l'angle droit et diviser le résultat par 2.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
le théorème de Pythagore :
le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des deux autres côtés. On peut calculer la longueur d'un côté d'un triangle rectangle quand on connaît les deux autres côtés. Pour cela, on prend la racine carrée d'un nombre.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. une symétrie axiale conserve l'orthogonalité. une symétrie centrale conserve l'orthogonalité.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Si les côtés d'un triangle mesurent respectivement 3, 4 et 5 centimètres (ou toute autre mesure), il doit y avoir un angle droit de 90 degrés entre les côtés les plus courts. Si vous arrivez à déterminer cet angle dans le triangle, alors sachez que cet angle est droit.