Définition 6 : On dit qu'un polynôme P est factorisable par (x − a) s'il existe un polynôme Q tel que pour tout x réel : P(x) = (x −a)Q(x) . Avec ces définitions on a le théorème fondamental suivant : Théorème 5 : (HP) a est racine de P ⇐⇒ P est factorisable par (x −a).
Si un trinôme de la forme ax2+bx+c a x 2 + b x + c est factorisable, alors on peut l'écrire sous la forme a(x−x1)(x−x2) a ( x − x 1 ) ( x − x 2 ) où x1 et x2 sont les deux racines calculées avec la formule quadratique.
Pour factoriser il faut trouver un facteur commun, le plus simple est surement un exemple : 12 et 6 ont pour facteur commun 3, car 3x4=12 et 3x2=6, dans les formules on prend pour facteur commun K pour montrer aussi que ça peut être n'importe quel réel ( de moins l'infini à plus l'infini).
L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs. avec k, a et b trois nombres quelconques. On dit que l'on a factorisé par k.
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Si on développe le produit (a+b)(a-b), on obtient a²-b². Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit.
La méthode de la factorisation
Factoriser une expression, cela signifie la transformer en produit de facteurs. Il existe deux méthodes pour factoriser une expression : Utiliser une identité remarquable ; Utiliser la distributivité.
La forme développée sert à vérifier qu'il s'agit bien d'un polynôme du second degré. La forme factorisée sert essentiellement à résoudre des équations et inéquations du second degré. La forme canonique sert à étudier les variations ou trouver un extremum (minimum ou maximum).
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Forme factorisée
Un trinôme du second degré ax2 + bx + c, est factorisé lorsqu'on l'écrit sous la forme a(x – x1)(x – x2). Si un trinôme ax2 + bx + c peut être factorisé, alors l'équation ax2 + bx + c = 0 a au moins une solution car on a a(x – x1)(x – x2) = 0 pour x = x1 ou x = x2.
Mettre un nombre en évidence, c'est effectuer l'opération « inverse »de la distributivité. Passer de l'expression ab + ac à l'expression a ( b + c ) , c'est mettre a en évidence. Lorsque l'on fait une mise en évidence, on transforme une somme ( ou une différence par un produit).
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Aucun besoin de factoriser, cette formule nous permet de trouver les inconnus d'une forme quadratique. En effet, dans certains contextes, comme dans la cinématique physique, on utilise la quadratique pour résoudre un problème quand on a cette même forme de trinôme sans nécessairement avoir besoin de factoriser.
Lorsqu'un polynôme est formé de deux termes, il est qualifié de binôme, alors qu'il est nommé trinôme lorsqu'il est composé de trois termes. Pour tous les cas où il y a quatre termes et plus, on qualifiera l'expression de polynôme.
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Pour factoriser le polynôme P= x3-x2-4x + 4 = 0, on constate que x=1 est une racine de P. Le polynôme se factorise donc sous la forme P= (x-1)(a x2+b x+c). On développe le membre de droite et on regroupe les termes de même degré. P= a x3 + (b-a) x2 + (c-b) x -c.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Si \Delta=0, on peut factoriser f(x) sous la forme f(x)=a(x-x_0)^2, avec x_0 la racine double de f. Si \Delta>0, on peut factoriser f(x) sous la forme f(x)=a(x-x_1)(x-x_2), avec x_1 et x_2 les deux racines de f.
Propriété d'un polynôme du troisième degré
Si $x_0$ est une racine du polynôme ($P(x_0) = 0$) alors $P$ se factorise sous la forme suivante : $P(x) = (x – x_0)\times Q(x)$ avec $Q$ un polynôme du second degré.
Développement : il est très facile de partir de la forme canonique pour aboutir à l'expression développée. Factorisation : la forme canonique se factorise grâce à l'identité a2−b2 a 2 − b 2 =(a−b)(a+b). = ( a − b ) ( a + b ) . ⇔f(x)=2(x−3)(x+2).
Développer, c'est transformer un produit en somme algébrique. Réduire une somme algébrique, c'est l'écrire avec le moins de termes possibles. Factoriser, c'est transformer une somme algébrique en produit.
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Quel est le contraire du verbe factoriser ? L'antonyme de factoriser est développer .
Factoriser un trinôme s'il est le développement d'un carré
Pour développer le carré d'une somme ou le carré d'une différence, on utilise les identités : ( a + b ) 2 = a 2 + 2 a b + b 2