La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b. Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
La représentation graphique de la fonction est une droite de coefficient directeur et d'ordonnée à l'origine . affine . Si est strictement positif, la droite est croissante. Si est strictement négatif, la droite est décroissante.
Lorsqu'une application affine est croissante, sa représentation graphique est une droite « montante » de la gauche vers la droite. Lorsqu'une application affine est décroissante sa représentation graphique est une droite « descendante » de la gauche vers la droite.
Représentation graphique
Lorsque b est nul, la droite passe par l'origine du repère cartésien. La droite a pour « pente » ou « coefficient directeur » le réel a. Si a > 0, la fonction affine est croissante (la droite « monte ») et si a < 0, elle est décroissante (la droite « descend »).
Une fonction affine est une fonction ayant pour structure ax + b dont l'inconnue X est un nombre réel et les données a et b, des nombres relatifs donnés. Le but étant alors de calculer l'inconnue X. La fonction affine peut être représentée par un graphique et notamment une ligne droite.
Le sens de variation d'une fonction affine dépend du signe du coefficient directeur $a$. Ce coefficient directeur représente la « pente » de la droite représentative de $f$. Si $a > 0$ la fonction est croissante, la droite « monte ». Si $a=0$ la fonction est constante, la droite est horizontale.
Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.
Soient x1 et x2 deux nombres quelconques (x1 x2). L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés.
Pour la tracer il est nécessaire de connaître deux points qui lui appartiennent. Le premier point que l'on choisit en général (car il ne nécessite pas de calcul) est le point d'abscisse nul, d'après la formule générale d'une fonction affine f(0) = a. 0 + b soit f(0) = b donc ses coordonnées sont (0;b).
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
Une des méthodes les plus couramment utilisées pour déterminer le sens de variation d'une fonction est l'étude du signe de sa dérivée. ➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction.
Une fonction f est décroissante sur un intervalle I lorsqu'elle inverse l'ordre des nombres sur cet intervalle. Autrement dit, quelque soient les réels et appartenant à I, si alors f ( a ) ≥ f ( b ) .
f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).
Croissance : Une fonction est croissante sur un intervalle I si et seulement si : pour tout a et b de I, Si a < b alors f(a) < f(b). Décroissance : Une fonction est décroissante sur un intervalle I si et seulement si : pour tout a et b de I, Si a < b alors f(a) > f(b).
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b. La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.
Définitions : • Une suite est croissante si chaque terme est supérieur ou égal à son précédent : un+1 ≥ un ou: Une suite est décroissante si chaque terme est inférieur ou égal à son précédent : un+1 ≤ un ou: Une suite est monotone si elle est croissante ou si elle est décroissante.
On dit qu'une fonction f est strictement croissante ssi pour x et y dans le DD de f , si on a x < y, on a aussi f (x) < f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x < y ⇒ f (x) < f (y). La fonction cube x ↦→ x3 est strictement croissante, bien que sa dérivée s'annule (en zéro).
Un maximum d'une fonction se trouve où la dérivée est nulle et la dérivée seconde est strictement négative. Un minimum d'une fonction se trouve où la dérivée est nulle et la dérivée seconde est strictement positive.
Si le coefficient directeur est strictement positif, la fonction est strictement croissante. Si le coefficient directeur est strictement négatif, la fonction est strictement décroissante. Si le coefficient directeur est nul, la fonction est constante.
Propriété Dans un plan muni d'un repère (O ; I ; J), la représentation graphique de la fonction affine x → ax + b est la droite d'équation : y = ax + b. a est le coefficient directeur de la droite et b est son ordonnée à l'origine.
Une fonction affine est une fonction dont le graphique est une droite. Par conséquent, le graphique d'une fonction non affine n'est pas une droite. Un exemple de fonction non affine serait quelque chose comme 𝑦 est égal à 𝑥 au cube ou 𝑦 est égal à 𝑒 à la puissance 𝑥.