Une fonction à valeurs réelles est dite majorée ( resp. minorée) si l'ensemble de ses valeurs possède un majorant ( resp. minorant) réel. Elle est bornée si et seulement si elle est à la fois majorée et minorée.
Une partie d'un ensemble ordonné est bornée si elle admet à la fois un majorant et un minorant dans l'ensemble ordonné. En dehors du cas où la partie elle-même contient un majorant et un minorant, cette définition dépend donc a priori du reste de l'ensemble ordonné.
Si f est une fonction continue sur un intervalle fermé borné [a, b] alors f est bornée sur [a, b] et atteint ses bornes sur [a, b].
On dit que la suite u est bornée lorsqu'elle est à la fois majorée et minorée. Si la suite u est une suite croissante et majorée, alors elle converge. Si la suite u est décroissante et minorée, alors elle converge. Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M.
Un intervalle borné est un intervalle dont les deux bornes (les extrémités) sont finies. Par exemple, ]0;5] et [1;2] sont bornés alors que [3;+∞[ ne l'est pas. Un intervalle est fermé si chacune de ses deux bornes est soit infinie, soit incluse dans l'intervalle (crochet vers l'intérieur).
Intervalles bornés
Étymologiquement, un intervalle est un ensemble de nombres compris entre deux valeurs et appelées les bornes de l'intervalle. Un intervalle est dit borné s'il est limité des deux côtés. Un intervalle est dit fermé en , si la borne est comprise.
Si l'ensemble des majorants d'une partie A de R admet un plus petit élément M on dit que M est la borne supérieure de A et on note M = sup(A). Cette borne est alors unique. Si l'ensemble des minorants d'une partie A de R admet un plus grand élément m, on dit que m est la borne inférieure de A et on note m = inf(A).
Propriété : Toute suite convergente est bornée. Donc si une suite n'est pas bornée, elle n'est pas convergente ! Mais, attention ! Il existe des suites bornées qui ne sont pas convergentes, par exemple la suite de terme général .
Une suite à la fois minorée et majorée est dite bornée. Par exemple, la suite u n = 1 n u_n= \dfrac {1}{n} un=n1 est bornée car, pour tout entier naturel non nul n, 0 < 1 n ≤ 1 0 < \dfrac {1}{n} \leq1 0<n1≤1.
Définition 1.1.2
Soit (un) une suite. On dit que : a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
Sur un tel espace, toute fonction continue f à valeurs réelles atteint automatiquement sa borne supérieure M (sinon, la fonction 1/(M – f) serait continue et non bornée) et, de même, sa borne inférieure. Le théorème des bornes peut donc s'énoncer ainsi : tout segment réel est pseudo-compact.
Lorsque la courbe est au-dessus de l'axe 𝑥 des abscisses, le signe de la fonction est positif, quand elle est en dessous de l'axe 𝑥 des abscisses, le signe de la fonction est négatif et à l'intersection avec l'axe 𝑥 des abscisses, le signe de la fonction est nul.
Démonstration. Soit (un)n∈N une suite de Cauchy et soit N ∈ N tel que |un − uN | < 1 pour tout n ≥ N. Ainsi, pour tout n ≥ N on a |un| < 1 + |uN |. On en déduit que la suite (un)n∈N est bornée par max{|u0|,|u1|,...,|uN−1|,|uN | + 1}.
Exemples. Si F possède un plus grand élément (en particulier si F est une partie finie d'un ensemble E totalement ordonné comme ℝ), alors cet élément maximum est la borne supérieure de F. Dans ce cas, sup(F) appartient à F. Réciproquement, si sup(F) existe et appartient à F, alors sup(F) est le plus grand élément de F.
Une suite est dite convergente si ses termes ont une limite finie quand n tend vers +∞. Créé par Sal Khan.
La relation x ≥ y se dit x est supérieur ou égal `a y. Si x ≤ y, on dit que x minore y ou que y majore x. Soit E un sous-ensemble de R, on dit a est un majorant de E si a majore tous les éléments de E. Par exemple, 2 est un majorant de [−1, 1].
On veut pouvoir dire que la suite de fonctions (fn) converge vers f lorsque la courbe représentative de la fonction fn se rapproche, quand n tend vers l'infini, de celle de f.
2/ Théorèmes de convergence
* Si (un) est croissante et majorée alors (un) converge. La suite « monte » mais est bloquée par « un mur » donc elle possède une limite finie. * Si (un) est décroissante et minorée alors (un) converge. La suite « descend » mais est bloquée par « un mur » donc elle possède une limite finie.
Si une suite est strictement croissante alors elle tend vers +∞ Faux : 1 − 1 n , ou −e−n. 4. Si une suite tend vers +∞ alors elle n'est pas majorée Vrai.
Théorème (admis)
Pour tout réel k compris entre ƒ(a) et ƒ(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que ƒ(c) = k. Autrement dit, pour tout réel k compris entre ƒ(a) et ƒ(b), l'équation ƒ(x) = k admet au moins une solution dans l'intervalle [a ; b].
Soit f:E→R f : E → R une fonction définie sur un ensemble E et soit a∈E a ∈ E . On dit que f admet un maximum en a si, pour tout x∈E x ∈ E , f(x)≤f(a) f ( x ) ≤ f ( a ) . On dit que f admet un minimum en a si, pour tout x∈E x ∈ E , f(x)≥f(a) f ( x ) ≥ f ( a ) .
Le système INF SP est un système transeuropéen (TES) qui assure l'échange administratif et normalisé d'informations entre les opérateurs économiques et les autorités douanières, et entre les autorités douanières elles-mêmes impliquées lors des procédures douanières de perfectionnement actif et passif.
En effet, si |xn| ≤ K pour tout n > N alors |xn| ≤ M pour tout n, en posant M = max(|x0|, |x1|, … , |xN|, K). Toute suite convergente est par conséquent bornée (par exemple la suite un = (–1)n/(n + 1), qui converge vers 0, reste comprise entre u1 = –1/2 et u0 = 1).
Remarque : L'ensemble des nombres réels ℝ est un intervalle qui peut se noter ] − ∞ ; +∞[.