Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.
On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≥ 0, alors f est croissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≤ 0, alors f est decroissante sur I.
Si le signe de la différence est positif ou nul pour tout n, la suite est croissante. Si le signe de la différence est négatif ou nul pour tout n, la suite est décroissante. Si la différence change de signe en fonction de la valeur de n, la suite n'est pas monotone.
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
Étudier la monotonie d'une suite, c'est dire si la suite est croissante, décroissante, ou ni l'un ni l'autre. La suite (un) définie par avec u0 = 1 est une suite arithmétique de raison r = –3 donc décroissante sur . Soit (un) une suite géométrique de premier terme u0 positif de raison q. (un) est décroissante lorsque .
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
Une application simple du théorème de Baire montre que l'ensemble des fonctions monotones quelque part est maigre dans l'ensemble des fonctions continues sur [a,b], par exemple.
Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure.
1. Qui est toujours sur le même ton, qui offre une grande uniformité de son, de rythme : Chant monotone. 2. Qui lasse par le manque de variété dans les intonations ou les inflexions : Acteur monotone.
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
Une matrice A ∈ Mn(R) est dite monotone si elle satisfait la propriété suivante : ∀x ∈ Rn, Ax ≥ 0 =⇒ x ≥ 0.
Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n, Un+1 Un. Dire qu'une suite (Un) est décroissante signifie que pour tout entier n, Un+1 Un.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).
Lorsque a ∈ Z, on a si x → a+, f(x) → a = f(a) et si x → a−, f(x) = a − 1+(a − (a − 1))2 = a = f(a). Donc f est continue sur R.
Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).
Lorsque la courbe est au-dessus de l'axe 𝑥 des abscisses, le signe de la fonction est positif, quand elle est en dessous de l'axe 𝑥 des abscisses, le signe de la fonction est négatif et à l'intersection avec l'axe 𝑥 des abscisses, le signe de la fonction est nul.
La monotone de chaleur est la courbe représentant le nombre d'heures durant lesquelles la puissance thermique est appelée au cours de l'année et ce pour chaque puissance appelée comprise entre un arrêt du chauffage (puissance nulle) et la puissance thermique maximale appelée.
Fonctions injectives et non monotones
La fonction est injective sur l'intervalle et pourtant elle n'est pas strictement monotone sur. (Par contre sa restriction à l'intervalle est strictement monotone mais elle y est aussi continue ; de même sa restriction à l'intervalle ).
Une fonction est paire si et seulement si sa courbe représentative est symétrique par rapport à l'axe des ordonnées. Une fonction est impaire si et seulement si sa courbe représentative est symétrique par rapport à l'origine du repère. On peut déterminer la parité d'une fonction par le calcul.
Une partie A d'un espace métrique borné (E,d) est dite bornée s'il existe x∈E x ∈ E et M>0 tel que A⊂B(x,M), A ⊂ B ( x , M ) , c'est-à-dire que, pour tout x∈A, x ∈ A , d(x,a)≤M. d ( x , a ) ≤ M .
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
− d'une relation qui permet de calculer à partir de chaque terme le terme suivant (On exprime un+1 en fonction de un pour tout entier naturel n). Cette relation est appelée relation de récurrence. Exemple Soit (un) la suite définie par u0 = 2 et pour tout entier naturel n par un+1 = −2un + 3. Calculer u1 et u2.