La fonction t↦∫b(t)a(t)f(x,t)dx pour t∈T est 'bien définie' si l'intégrale existe pour toutes les valeurs de t dans l'intervalle T.
Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).
L'intégrale définie d'une constante est proportionnelle à la longueur de l'intervalle d'intégration : 𝑐 𝑥 = 𝑐 ( 𝑏 − 𝑎 ) . d. En permutant les bornes de l'intégrale, on obtient 𝑓 ( 𝑥 ) 𝑥 = − 𝑓 ( 𝑥 ) 𝑥 .
En terme de différentielle, on a la caractérisation suivante : Proposition : Soit f une fonction définie sur un ouvert U de Rn. R n . f est de classe C1 sur U si et seulement si f est différentiable sur U et si l'application x↦dfx x ↦ d f x est continue.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.
Une fonction numérique f dГune variable réelle définie sur un intervalle I est dite de classe 1 C si elle est dérivable sur cet intervalle et si sa dérivée 'f est continue sur cet intervalle. a) Si f et g sont deux fonctions de classe 1 C sur un intervalle I alors les fonctions f g et f g sont de classe 1 C sur I .
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Les dernières propriétés qui nous intéressent concernent l'intégration de fonctions paires et impaires. Rappelons que si une fonction est impaire, 𝑓 de moins 𝑥 égale moins 𝑓 de 𝑥. Et une fonction est paire si 𝑓 de moins 𝑥 égale 𝑓 de 𝑥. Géométriquement, une fonction impaire est symétrique par rapport à l'origine.
Si u(x) > 0 sur I, alors une primitive de est ln(u). Si u(x) < 0 sur I, alors une primitive de est ln(-u).
La principale méthode pour calculer une intégrale passe par la notion de primitive d'une fonction. La « primitivation » est l'opération qui, à partir d'une fonction f, donne une fonction F dérivable et dont la dérivée est égale à f : F′(x) = f(x).
Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .
On appelle f fonction définie sur D , tout procédé de calcul, qui à chaque réel x , lui associe un réel unique noté f(x) .
Solution : 1. (un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
fonction de classe C-infini. Une fonction définie sur un domaine I est dite de classe-infini sur I si elle est infiniment dérivable sur ce domaine. La plupart des fonctions usuelles sont de classe C-infini.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
Prenons f(x)=x3sin(1x2), f est prolongeable par continuité en 0 et on a f(0)=0. f est aussi dérivable en 0 et on a f′(0)=0. Maintenant en considérant la définition de la 2-dérivabilité ci-dessus, on montre f est 2 fois dérivable en 0.
La fonction valeur absolue prenant deux valeurs différentes suivant les valeurs de x, sa dérivée fera de même. Si x < 0, sa dérivée vaut −1. Si x > 0, sa dérivée vaut 1. La fonction valeur absolue n'est pas dérivable en 0.
La dérivée de la fonction composée (g ∘ f) dite g rond f est définie par (g ∘ f)'(x) = g'(f(x)) × f'(x) .