Comment savoir si une intégrale est bien définie ?

Interrogée par: Adrien Lelievre-Durand  |  Dernière mise à jour: 2. April 2024
Notation: 4.5 sur 5 (31 évaluations)

La fonction t↦∫b(t)a(t)f(x,t)dx pour t∈T est 'bien définie' si l'intégrale existe pour toutes les valeurs de t dans l'intervalle T.

Comment justifier qu'une fonction est bien défini ?

Pour montrer qu'une application est bien définie, il faut s'assurer que pour chaque antécédent x on définit bien une image unique y dans l'ensemble d'arrivée (d'où l'importance de l'ensemble d'arrivée).

Comment calculer une intégrale définie ?

L'intégrale définie d'une constante est proportionnelle à la longueur de l'intervalle d'intégration :  𝑐 𝑥 = 𝑐 ( 𝑏 − 𝑎 ) .   d. En permutant les bornes de l'intégrale, on obtient  𝑓 ( 𝑥 ) 𝑥 = −  𝑓 ( 𝑥 ) 𝑥 .

Comment montrer qu'une fonction définie par intégrale est de classe C1 ?

En terme de différentielle, on a la caractérisation suivante : Proposition : Soit f une fonction définie sur un ouvert U de Rn. R n . f est de classe C1 sur U si et seulement si f est différentiable sur U et si l'application x↦dfx x ↦ d f x est continue.

Comment montrer qu'une fonction définie par intégrale est dérivable ?

Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .

MONTRER QU'UNE INTÉGRALE GÉNÉRALISÉE EST BIEN DÉFINIE / CONVERGE / EXISTE

Trouvé 26 questions connexes

Comment savoir si c'est dérivable ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).

Comment savoir si une fonction est indéfiniment dérivable ?

On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.

Quand une intégrale est nulle ?

Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.

Comment justifier qu'une fonction est c1 ?

Une fonction numérique f dГune variable réelle définie sur un intervalle I est dite de classe 1 C si elle est dérivable sur cet intervalle et si sa dérivée 'f est continue sur cet intervalle. a) Si f et g sont deux fonctions de classe 1 C sur un intervalle I alors les fonctions f g et f g sont de classe 1 C sur I .

Est-ce qu'une intégrale est toujours positive ?

On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.

Comment montrer qu'une intégrale est paire ?

Les dernières propriétés qui nous intéressent concernent l'intégration de fonctions paires et impaires. Rappelons que si une fonction est impaire, 𝑓 de moins 𝑥 égale moins 𝑓 de 𝑥. Et une fonction est paire si 𝑓 de moins 𝑥 égale 𝑓 de 𝑥. Géométriquement, une fonction impaire est symétrique par rapport à l'origine.

Quelle est la primitive de ln de U ?

Si u(x) > 0 sur I, alors une primitive de est ln(u). Si u(x) < 0 sur I, alors une primitive de est ln(-u).

Comment faire l'intégrale d'une fonction ?

La principale méthode pour calculer une intégrale passe par la notion de primitive d'une fonction. La « primitivation » est l'opération qui, à partir d'une fonction f, donne une fonction F dérivable et dont la dérivée est égale à f : F′(x) = f(x).

Quand Dit-on qu'une fonction est définie ?

Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .

Quand une fonction est definie ?

On appelle f fonction définie sur D , tout procédé de calcul, qui à chaque réel x , lui associe un réel unique noté f(x) .

Comment prouver qu'une suite est bien définie ?

Solution : 1. (un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.

Comment savoir quel type de fonction ?

En troisième, on ne voit que trois types de fonctions :
  1. La fonction constante, par exemple f(x)=5. La fonction constante associe toujours le même nombre à x, quelque soit la valeur de x que l'on choisit. ...
  2. La fonction linéaire, par exemple f(x)=2x. ...
  3. La fonction affine, par exemple f(x)=2x+3.

Comment justifier qu'une fonction est de classe C infini ?

si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.

C'est quoi la Classe C infini ?

fonction de classe C-infini. Une fonction définie sur un domaine I est dite de classe-infini sur I si elle est infiniment dérivable sur ce domaine. La plupart des fonctions usuelles sont de classe C-infini.

Quelle est la différence entre une primitive et une intégrale ?

La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).

Comment savoir si une intégrale converge ou diverge ?

Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.

Est-ce que toute fonction continue est intégrable ?

Critères d'intégrabilité

Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.

Comment montrer que f est deux fois dérivable ?

Prenons f(x)=x3sin(1x2), f est prolongeable par continuité en 0 et on a f(0)=0. f est aussi dérivable en 0 et on a f′(0)=0. Maintenant en considérant la définition de la 2-dérivabilité ci-dessus, on montre f est 2 fois dérivable en 0.

Pourquoi la fonction valeur absolue n'est pas dérivable ?

La fonction valeur absolue prenant deux valeurs différentes suivant les valeurs de x, sa dérivée fera de même. Si x < 0, sa dérivée vaut −1. Si x > 0, sa dérivée vaut 1. La fonction valeur absolue n'est pas dérivable en 0.

Comment on dérivé f ◦ g ?

La dérivée de la fonction composée (g ∘ f) dite g rond f est définie par (g ∘ f)'(x) = g'(f(x)) × f'(x) .