Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Suite géométrique : formule
1 , 3 , 9 , 27 , . . . est une suite géométrique. Quand nous divisons un terme par le terme précédent, le résultat est toujours . Une suite arithmétique est une suite numérique dont la différence entre deux termes consécutifs est constante.
Autrement dit, il faut montrer que le quotient est constant : Pour montrer qu'une suite n'est pas géométrique, il suffit de montrer que, sur les premiers termes par exemple, le quotient n'est pas constant.
Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.
Pour montrer qu'une suite est arithmétique, il faut démontrer que u n + 1 − u n est une constante, pour tout . Pour calculer la raison d'une suite arithmétique, nous pouvons utiliser la définition par récurrence d'une suite arithmétique, u n + 1 = u n + r .
u p + ⋯ + u q = ( q − p + 1 ) × ( u p + u q ) 2 . On retient souvent cette formule sous la forme : up+⋯+uq=(nb de termes)×(premier terme+dernier terme)2. u p + ⋯ + u q = ( nb de termes ) × ( premier terme + dernier terme ) 2 .
Définition : une suite (un) est arithmétique s'il existe un nombre réel r tel que, pour tout entier naturel n, un+1 = un +r. Le réel r est appelé raison de la suite (un). Forme explicite : si la suite (un) est arithmétique de raison r et de premier terme u0, alors pour tout entier naturel n, un = u0 +nr.
Une suite est géométrique si le quotient de deux termes consécutifs est constant. Ce quotient constant s'appelle la raison de la suite. Aussi bien la formule explicite que la formule par récurrence permettent de calculer le terme pour toute valeur de .
Pour justifier qu'une suite (un) est géométrique, il suffit d'utiliser la définition suivante. Une suite (un) est géométrique si l'on peut écrire un+1 sous la forme : un+1 = qun. Le nombre réel q est alors la raison de la suite géométrique (un).
Pour une suite géométrique (Un) de raison q et de premier terme positif : Si q > 1 alors la suite (Un) sera croissante. Si q = 1 alors la suite (Un) sera constante. Si 0 < q < 1 alors la suite (Un) sera décroissante.
La suite 1,2,4,8,16,… est une suite géométrique de raison 2 puisque chaque terme est obtenu du précédent en le multipliant par 2. La suite 9,3,1,1/3,… est une suite géométrique de raison 1/3.
Suites arithmétiques et géométriques Une suite (un) est arithmétique à partir du rang n0 s'il existe un réel r tel que , pour tout entier n ≥n0 , un+1 = un + r . Une suite (un) est géométrique à partir du rang n0 s'il existe un réel q tel que , pour tout entier n ≥n0 , un+1 = q un .
En mathématiques, la raison est la valeur qui permet de passer d'un terme au suivant dans certaines suites définies par récurrence.
Les types de suites numériques souvent rencontrées sont les suites arithmétiques et les suites géométriques. Les suites arithmétiques sont les suites où la différence entre deux termes consécutifs est une constante. En revanche, pour les suites géométriques, le quotient de deux termes consécutifs est une constante.
La somme des n premiers termes d'une suite géométrique de raison q et de premier terme a est donnée par la formule : a(1-qⁿ)/(1-q). Dans cette vidéo, on donne une justification assez simple de cette formule.
En mathématiques, une suite arithmético-géométrique est une suite satisfaisant une relation de récurrence affine, généralisant ainsi les définitions des suites arithmétiques et géométriques.
∑ [terme général d'une suite arithmétique] = [nombre de termes] × [premier terme] + [dernier terme] 2 .
Trouver la raison d'une suite géométrique
On a donc un = aqn−1. Pour trouver la raison d'une suite géométrique, si l'on connaît le premier et le dernier de n termes consécutifs, il faut extraire la racine (n−1)ième du quotient du dernier terme par le premier.
La raison d'une suite arithmétique
Une suite arithmétique est une suite où chacun des termes est égal à la somme du terme précédent et d'un nombre fixe. Ce nombre fixe s'appelle la raison de la suite.
On peut exprimer un en fonction de n. Par exemple, soit (un)n∈ la suite définie par, pour tout entier naturel n : un = n2. On a : u0 = 0 ; u1 = 1 ; u2 = 4 ; u3 = 9... On peut aussi calculer, par exemple : un+1 = (n + 1)2 = n2 + 2n+ 1 qu'il ne faut pas confondre avec un + 1 = n2 + 1.
On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble. Les nombres naturels représentent tous les nombres entiers positifs, incluant le 0. 0. Les nombres entiers sont les nombres qui n'ont pas de partie décimale ou dont la partie décimale est nulle.
Définitions : • Une suite est croissante si chaque terme est supérieur ou égal à son précédent : un+1 ≥ un ou: Une suite est décroissante si chaque terme est inférieur ou égal à son précédent : un+1 ≤ un ou: Une suite est monotone si elle est croissante ou si elle est décroissante.
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ≤ f(x2).
Une fonction peut-elle être ni croissante ni décroissante ? - Quora. Oui, cela s'appelle une fonction non monotone. C'est une fonction qui ne croit ni ne décroit.