L'événement "A ou B", noté A ∪ B, est réalisé lorsqu'au moins l'un des deux événements est réalisé. Théorème : Si A et B sont deux événements d'une expérience aléatoire, alors : P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
P(A OU B) = P(A) + P(B) – P(A ET B).
Pour calculer la probabilité d'un événement, vous pouvez simplement utiliser la formule générale de probabilité : P = n/N. Vous devez donc connaître le nombre d'issues favorables et le nombre total d'issues possibles.
La probabilité de l'événement B est obtenue en utilisant : P(B)=P(A∩B)+P(A∩B)=P(A)×PA(B)+P(A)×PA(B)=0,6×0,7+0,4×0,2=0,5.
Pour calculer la probabilité qu'un événement se produise, on doit connaître le nombre d'issues où l'événement se produit et le nombre d'issues total. On calcule ensuite la probabilité en divisant le nombre d'issues où l'événement se produit par le nombre total d'issues.
L'événement "A ou B", noté A ∪ B, est réalisé lorsqu'au moins l'un des deux événements est réalisé. Théorème : Si A et B sont deux événements d'une expérience aléatoire, alors : P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Le nombre de combinaisons des n éléments d'un ensemble E pris k à la fois est donné par la relation suivante : Ckn=n!k! (n−k)!
Deux événements A et B sont dits indépendants (par rapport à P ) si P(A∩B)=P(A)P(B), P ( A ∩ B ) = P ( A ) P ( B ) , ce qui peut encore s'écrire, si P(A)≠0 P ( A ) ≠ 0 , P(B|A)=P(B) P ( B | A ) = P ( B ) .
P(A U B) = p(A) + p(B) - p(A n B)
On calcule la probabilité d'une issue en multipliant les probabilités inscrites sur les branches qui mènent à elle. Par exemple, la probabilité d'obtenir 3 fois pile est 0,43=0,064. La probabilité d'obtenir pile puis face puis pile est 0,4×0,6×0,4=0,096. La probabilité d'obtenir 3 fois face est 0,6×0,6×0,6=0,216.
Les probabilités peuvent être exprimées en fractions, décimales et pourcentages. Par exemple, il peut être impossible qu'une chose se produise. On pourrait alors dire que la probabilité est de zéro. On peut aussi être absolument certain qu'une chose se produise.
On considère un événement comme étant impossible tout événement qui ne se réalisera jamais. De ce fait, sa probabilité est nulle. Toujours en prenant l'exemple du lancer d'un dé équilibré à 6 faces, l'événement A : "obtenir le nombre 8" est un événement impossible.
La probabilité d'un événement est la somme des probabilités des événements élémentaires qui le réalisent. La somme des probabilités de tous les événements élémentaires d'une expérience aléatoire est égale à 1.
p(A∩B)=p(A)×p(B).
Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté A ∩ B, dit « A inter B », qui contient tous les éléments ...
Pour un évènement, une probabilité est égale au rapport entre le nombre de résultats favorables et le nombre de résultats possibles de l'expérience aléatoire.
Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪.
Pour un test unilatéral à droite, la valeur de p est égale à un moins cette probabilité ; valeur de p = 1 - cdf(st). Pour un test bilatéral, la valeur de p est égale à deux fois la valeur de p du test unilatéral à gauche, si la valeur de la statistique de test de votre échantillon est négative.
A U B (l'union de A et B) est l'ensemble de nombres qui appartiennent soit à A soit à B (soit aux deux).
On dit que 𝐴 et 𝐵 sont des évènements incompatibles si 𝐴 ∩ 𝐵 = ∅ . Cela revient à dire que les évènements ne peuvent pas se produire en même temps, car 𝑃 ( 𝐴 ∩ 𝐵 ) = 𝑃 ( ∅ ) = 0 . On dit qu'un ensemble d'évènements est incompatible s'ils sont incompatibles deux à deux.
La probabilité de la réalisation consécutive des évènements indépendants A et B est donnée par P(A∩B)=P(A)×P(B). P ( A ∩ B ) = P ( A ) × P ( B ) .
La probabilité que deux évènements indépendants se réalisent dans une même expérience aléatoire est égale au produit de leurs probabilités. Ainsi, si A et B sont des évènements d'un espace probabilisé U, on a l'égalité : P(A) × P(B) = P(A ∩ B)
On utilise la formule des probabilités totales pour calculer une probabilité p\left(F\right) lorsque la réalisation de F dépend de la réalisation d'autres événements.
Nombre de combinaisons = 10x10x10x10 = 10 000
Cela signifie qu'il existe 10 000 combinaisons possibles de 4 chiffres différents avec les chiffres de 0 à 9.
Les combinaisons d'un ensemble d'éléments correspondent aux dispositions non ordonnées de certains éléments de cet ensemble. Les combinaisons d'un ensemble ne se distinguent pas par l'ordre des éléments qui les composent. Par exemple, (A,C) et (C,A) sont 2 combinaisons équivalentes de l'ensemble {A,B,C}.