Réponse. Nous rappelons que pour simplifier une fonction rationnelle, nous trouvons son domaine de définition, factorisons le numérateur et le dénominateur, puis annulons les facteurs partagés sur le domaine de définition.
Et pour simplifier une fonction, il faut chercher des facteurs communs. Remarquons d'abord qu'il y a un facteur commun, deux, au numérateur et au dénominateur de la fraction. Nous divisons donc par deux, ce qui nous donne 𝑥 au carré plus six 𝑥 plus huit sur 𝑥 fois 𝑥 plus deux.
Lorsqu'on simplifie une expression littérale, les nombres doivent être multipliés entre eux. Simplification de l'expression littérale D. On commence par placer les nombres devant les lettres classées par ordre alphabétique. On supprime ensuite les signes de multiplication inutiles et on multiplie les nombres entre eux.
1 - On factorise le numérateur et le dénominateur. 2 - On écrit à quelles conditions la fraction rationnelle existe. 3- On simplifie par les facteurs communs. 4- On écrit les conditions devenues "invisibles" du fait de cette simplification.
Simplifier une fraction, c'est l'écrire avec un numérateur et un dénominateur plus petits. En pratique, cela revient à diviser le numérateur et le dénominateur par un même nombre.
Exemple : Pour simplifier 6/8, le PGCD de 6 et 8 est 2. Vous obtenez donc 3/4.
Définition. Une fraction est irréductible lorsque son numérateur et son dénominateur n'ont aucun diviseur commun (autre que 1). Pour rendre irréductible une fraction, on simplifie le numérateur et le dénominateur par leur(s) diviseur(s) commun(s).
Simplifier une fraction revient à l'écrire avec les plus petits nombres entiers possibles. Mais 12 et 15 sont divisibles par le même nombre : 3. Il y a 3 fois moins de parts coloriées, mais également trois fois moins de part au total ! On passe de 12 parts sur 15 à 4 parts sur 5.
ASTUCE: On peut simplifier une multiplication de fractions en divisant un numérateur et un dénominateur n'appartenant pas à la même fraction par un diviseur commun. Il est possible de diviser le numérateur de la 1ère fraction (9) et le dénominateur de la 2ème fraction (12) par un diviseur commun (3).
Pour simplifier une fonction rationnelle 𝑓 ( 𝑥 ) = 𝑝 ( 𝑥 ) 𝑞 ( 𝑥 ) , nous devons effectuer les étapes suivantes : Déterminer les valeurs de 𝑥 avec 𝑞 ( 𝑥 ) = 0 . Ensuite, le domaine de définition de 𝑓 ( 𝑥 ) comprend toutes les valeurs réelles sauf ces racines.
Pour rendre une fraction irréductible, il faut diviser le numérateur et le dénominateur par leur plus grand commun diviseur. Pour connaître le plus grand commun diviseur de deux nombres, nous nous servons de leurs décompositions en facteurs premiers.
Règle : pour additionner deux nombres de même signe, • on garde le même signe, • et on additionne les distances à zéro. Exemples : • (–3) + (–5) = –8 On garde le même signe – et on fait 3 + 5 pour trouver 8.
Diviser deux fractions, c'est multiplier la première fraction par l'inverse de la deuxième. Il suffit donc de trouver l'inverse (permuter le numérateur et le dénominateur) de la seconde fraction puis de procéder comme pour une multiplication.
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
En d'autres termes, n'importe quelle fraction complexe peut être simplifiée, d'abord en calculant le numérateur et le dénominateur pour obtenir deux fractions simples, ensuite en multipliant la fraction du numérateur par l'inverse de la fraction du dénominateur.
Quel est le plus grand nombre qui divise à la fois le numérateur et le dénominateur ? Quel qu'il soit, divisez les deux nombres par ce PGCD. Pour notre exemple, le plus grand nombre commun aux deux nombres est 12. Par conséquent, nous divisons 24 et 60 par 12, ce qui nous donne : 2/5, et notre fraction est simplifiée !
Pour multiplier des fractions, on multiplie les numérateurs entre eux et les dénominateurs entre eux.
La réduction d'une fraction pour trouver des fractions équivalentes. La méthode la plus facile pour réduire une fraction est la division. Il s'agit de trouver un diviseur commun au numérateur et au dénominateur. On cherche à réduire la fraction 2432 pour trouver une fraction équivalente.
Pour simplifier une fraction décimale, je vais chercher à diviser par 10, 100 ou 1 000. Pour cela, il faut diviser le numérateur et le dénominateur. Diviser par 10 revient à enlever 1 zéro au numérateur et 1 zéro au dénominateur. Diviser par 100 revient à enlever 2 zéros au numérateur et 2 zéros au dénominateur.
1 : Calculer le PPCM des dénominateurs et le choisir comme dénominateur commun. 2 : Additionner les fractions qui ont maintenant le même dénominateur. 3 : Simplifier la fraction obtenue.
La règle pour additionner des fractions
Lorsque les fractions n'ont pas le même dénominateur, il faut les transformer pour faire en sorte qu'elles aient le même dénominateur et ainsi pouvoir appliquer la règle précédente. Il faut alors multiplier le numérateur et le dénominateur par un même nombre.
METTRE AU MÊME DÉNOMINATEUR
o On transforme chaque fraction pour une autre équivalente, par dénominateur le PPCM. Pour cela on multiplie les deux membres de chaque fraction par le nombre résultat de diviser le PPCM entre le dénominateur.
Pour trouver un dénominateur commun, on peut simplement multiplier tous les dénominateurs ensemble. Par la suite, il s'agit de trouver les fractions équivalentes de chacune des fractions en utilisant le dénominateur commun obtenu. Par contre, le dénominateur commun ainsi obtenu est souvent d'une grande valeur.