Si on multiplie chaque membre d'une équation par un même nombre, l'égalité reste vraie. Le membre de gauche est divisé par 2. Il faut donc le multiplier par 2 pour faire disparaître le 2 qui est sous la barre de fraction. Et pour maintenir l'égalité, il faut en même temps multiplier par 2 le côté droit du signe égal.
Lorsqu'on simplifie une expression littérale, les nombres doivent être multipliés entre eux. Simplification de l'expression littérale D. On commence par placer les nombres devant les lettres classées par ordre alphabétique. On supprime ensuite les signes de multiplication inutiles et on multiplie les nombres entre eux.
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
Simplifier une fraction, c'est lui trouver une fraction égale avec un numérateur et un dénominateur plus petits. Ainsi, la simplification de fractions est une application directe de la propriété des quotients égaux, restreinte ici aux fractions.
Règles : Dans une expression, on effectue d'abord les calculs entre les parenthèses les plus intérieures puis les multiplications et les divisions de gauche à droite et, enfin, les additions et les soustractions de gauche à droite. Exemple : Calcule A = 7 + 2 × (5 + 7) – 5.
Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérales des calculs possibles.
Simplification d'une expression littérale : On peut simplifier les expressions en supprimant le signe si et seulement s'il est suivi d'une lettre (ou parenthèse) ou en utilisant les puissances.
I) Ecriture simplifiée
Il s'agit d'une manière visant à enlever les parenthèses pour alléger l'écriture. Pour le faire, il s'agit d'abord de transformer les soustractions en additions, permettant ainsi d'enlever les parenthèses et les signes +. Exemples : a) Simplifions l'écriture puis calculons (+9)–(+3).
Pour pouvoir simplifier, il faut qu'on puisse factoriser les deux polynômes et trouver un binôme commun. Factorisez le numérateur en un produit de deux binômes. Pour plus d'informations sur cette opération, lisez cet article. Récrivez votre expression avec, en numérateur, le produit des deux binômes.
Réponse. Simplifier le plus possible l'expression correspondant au produit de 2,5x par 2x. 2,5x + 2x = 4,5x.
- La simplification algébrique est basée sur la loi de l'adjacence logique. Cette loi stipule que deux termes sont adjacents logiques s'ils ne varient que d'une seule variable (directe dans un terme, complémentée dans l'autre). Cette variable est alors éliminée de l'expression de la fonction.
Simplifier une racine carrée, c'est l'écrire sous la forme « a x √b » avec b le plus petit possible. La simplification de racines carrées est utile quand on doit effectuer des additions, des soustractions ou des multiplications de racines carrées.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Le résultat de la division de 257 est 3 avec un reste de 4 .
Priorités de calcul : Les calculs se font dans l'ordre des priorités suivant : 1/ Les calculs entre parenthèses 2/ Les puissances 3/ La multiplication et la division 4/ L'addition et la soustraction 5/ En cas d'opérations de mêmes priorités, de gauche à droite.
Calculer la valeur d'une expression littérale, c'est attribuer un nombre à chaque lettre de l'expression afin d'effectuer le calcul. Calculer A = − x2 + 3(x + 6) + 4y lorsque x = − 4 et y = − 8.