Une façon de simplifier une expression trigonométrique consiste à l'écrire en fonction des fonctions sinus et cosinus en utilisant la définition la fonction cosécante, qui apparaît dans l'expression donnée : c s c s i n 𝜃 = 1 𝜃 . La fonction tangente est impaire, d'où l'égalité t a n t a n ( − 𝜃 ) = − 𝜃 .
Pour déterminer la periode d'une fonction trigonométrique, il faut déterminer le plus petit T positif tel que f(x) = f(x+T) pour tout x dans le domaine de définition de f. Pour les fonctions trigonométriques de base, la période de sin(x) et de cos(x) est 2*pi, et la période de tan(x) est pi.
Les fonctions cos et sin sont donc 2π-périodiques : pour tout x ∈ R, pour tout k ∈ Z, sin(x + 2kπ) = sin(x) et cos(x + 2kπ) = cos(x). Ces fonctions associent donc la même valeur `a toutes mesures d'un même angle.
La sécante est l'inverse du cosinus. Le cosinus est le quotient de la longueur du côté adjacent par celle de l'hypoténuse, donc la sécante est le quotient de la longueur de l'hypoténuse par celle du côté adjacent.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h). Représentation graphique sur un intervalle de deux périodes de la fonction cosinus. Le cosinus est habituellement cité en deuxième parmi les fonctions trigonométriques.
Les graphiques des fonctions cosinus et sinus sont les translatés l'un de l'autre. Cette propriété est mise sous forme algébrique par les formules trigonométriques suivantes : ( π 2 − θ ) = cos et ( π 2 − θ ) = sin .
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
Théorème : Limite d'une expression trigonométrique
Si 𝑥 est mesuré en radians, alors l i m s i n → 𝑥 𝑥 = 1 . En factorisant par 1 𝑎 et en réarrangeant on obtient que l i m s i n → 𝑎 𝑥 𝑥 = 𝑎 . On peut remarquer que ce résultat est également valable lorsque 𝑎 = 0 . Nous pouvons résumer cela comme suit.
Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Quant à la tangente, elle est le rapport entre la fonction sinus et cosinus.
Calcul du sinus
On veut obtenir une valeur approchée du sinus d'un angle de 50°. On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près).
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c).
Les rapports trigonométriques sont le sinus, le cosinus, la tangente, la cosécante, la sécante et la cotangente.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.
On peut résumer ainsi chacune de ces formules trigonométriques : Cosinus(angle) = Adjacent ÷ Hypothénuse. Sinus(angle) = Opposé ÷ Hypothénuse. Tangente(angle) = Opposé ÷ Adjacent.
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
Pour déterminer la valeur du sinus ou d'un cosinus d'un angle à l'aide de la calculatrice, il convient de mettre la calculatrice sur le bon mode (degré ou radian) puis d'utiliser les touches \textcolor{Red}{cos} et \textcolor{Red}{sin}.
Branche des mathématiques, issue de l'astronomie, qui, en liaison avec la géométrie euclidienne, permet de calculer les mesures des côtés d'un triangle ou de ses angles, à partir de certaines d'entre elles. (On y utilise et étudie en particulier les fonctions circulaires et leurs réciproques.)
Le sinus de 𝜃 est égal à l'opposé sur l'hypoténuse et le cosinus, ou cosinus, de 𝜃 est égal à l'adjacent sur l'hypoténuse. Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
assogna «Bonjour, Oui, la cosécan ... » Bonjour, Oui, la cosécante est vraiment l'inverse multiplicatif du sinus et la sécante est l'inverse multiplicatif du cosinus .
Sa représentation graphique est symétrique par rapport à l'origine du repère. Propriété : Les fonctions cosinus et sinus sont dérivables en 0 et on a : cos'(0) = 0 et sin'(0)=1.