Tracer la courbe représentative d'une fonction comportant une valeur absolue. On peut tracer n'importe la courbe représentative d'une fonction de la forme f(x)=k|x-a|+h en utilisant des transformations du plan (décalages, symétrie et homothéties).
La courbe représentative d'une fonction f est l'ensemble des points M\left(x;y\right) tels que f\left(x\right) =y et x\in D_f. On peut en tracer une allure si l'on connaît une expression de la fonction. On considère la fonction f définie, pour tout réel x, par f\left(x\right) = 2x^2-x+1.
La fonction valeur absolue prenant deux valeurs différentes suivant les valeurs de x, sa dérivée fera de même. Si x < 0, sa dérivée vaut −1. Si x > 0, sa dérivée vaut 1. La fonction valeur absolue n'est pas dérivable en 0.
La forme de base pour une fonction valeur absolue est : f(x)=∣x∣ f ( x ) = ∣ x ∣ Elle est représentée par deux droites que l'on appelle branches.
La valeur absolue d'un nombre permet de considérer ce nombre sans tenir compte de son signe. Autrement dit, si un nombre x est positif, alors la valeur absolue de x est x, mais si x est négatif, alors la valeur absolue de x est son opposé, soit −x. − x .
Propriété La fonction valeur absolue f est strictement décroissante sur ] - \infty \: ; 0 ] et strictement croissante sur [ 0 \: ; + \infty [. Son minimum sur \mathbb { R } est 0 et il est atteint pour x = 0 . Démonstration Sur ] - \infty \: ; 0 ], f est définie par f(x) = -x .
Première approche. Un nombre réel est constitué de deux parties: un signe + ou - et une valeur absolue. + 7 est constitué du signe + et de la valeur absolue 7.
Notation. La valeur absolue d'un nombre réel x est noté | x | .
On résout les inéquations u\left(x\right) \geq 0 et u\left(x\right) \lt 0. Puis on insère éventuellement la valeur absolue dans la fonction, si elle ne représente pas la totalité de la fonction. On conclut sur la valeur de f\left(x\right) selon l'intervalle considéré.
La fonction valeur absolue n'est donc pas dérivable en 0.
la courbe admet deux demi-tangentes en 0. Une demi-tangente à gauche de coefficient directeur -1. Une demi-tangente à droite de coefficient directeur 1.
La fonction valeur absolue est continue en 0, mais elle n'est pas dérivable en 0. Soit f une fonction continue sur un intervalle I. Si a et b sont deux réels de I et si k est un réel compris entre f(a) et f(b), alors il existe au moins un réel x compris entre a et b tel que f(x) = k.
Tracer l'allure de la courbe
On peut placer sur un repère le sommet de la parabole, ainsi que les points d'intersection avec l'axe des abscisses. On trace alors une allure de la parabole, en respectant le sens de variation de la fonction.
La valeur absolue d'un nombre réel correspond à la distance qui sépare ce nombre de l'origine sur une droite numérique. Ainsi, la distance entre 0 et –10 est la même qu'entre 0 et 10.
Par exemple, puisque le point 2 est à deux unités du point 0, la valeur absolue de 2 est 2.
On rappelle que la valeur absolue d'un nombre réel est sa distance à 0 sur la droite numérique. Par exemple, dans l'expression | − 5 | (qui peut être lue comme « la valeur absolue de − 5 »), le nombre − 5 est noté entre deux barres qui sont les symboles de la valeur absolue.
La valeur absolue est la distance par rapport à 0. Entre 0 et -12, la distance est 12.
La valeur absolue est celle que le chiffre a par lui-même, et la valeur relative est celle que lui donne le rang qu'il occupe.
0 donne le même résultat dans les deux cas : la valeur absolue de 0 est 0. Or, donc et donc . Par ailleurs, est la somme de deux réels positifs, et est positif. La notion de distance permet de résoudre des équations et inéquations avec des valeurs absolues.
La fonction "valeur absolue" n'est pas dérivable en 0 : le nombre dérivé à droite vaut 1, alors que le nombre dérivé à gauche vaut -1. La fonction "valeur absolue" admet des primitives sur : les fonctions de la forme x x|x|+k, k .
Pour déterminer les zéros de f, il faut résoudre l'équation f(x)=0. En utilisant la démarche de résolution d'équations vue dans cette à la section 1.4, on doit résoudre : 2|x−1|−3=0⇒2|x−1|=3.
On note souvent f la fonction et x le nombre de départ. On note f(x) le nombre d'arrivée. Par exemple, fonction f(x) = 2x + 3 est une fonction qui a tout x associe 2x+3. Si on lui donne 5, elle ressortira Si on lui donne (-4) elle lui associera et ainsi pour chaque nombre x dont on souhaite obtenir la valeur f(x).