Cette propriété permet de tracer facilement le cercle inscrit à un triangle : 1ère étape : on trace 2 bissectrices dans le triangle ABC. Leur point d'intersection est le point I. 2ème étape : on trace la perpendiculaire à un des côtés du triangle passant par I.
En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux). Leur point d'intersection O donne le centre du cercle circonscrit.
A l'aide du compas, on place sa pointe à une extrémité du segment et on trace un arc de cercle. Puis en conservant le même écartement du compas, on place la pointe sur la deuxième extrémité du segment en traçant un deuxième arc de cercle. Le point où se coupent ces deux arcs de cercle est le sommet du triangle.
Cercle inscrit
Il existe un et un seul cercle intérieur au triangle et tangent à la fois à ses trois côtés. Ce cercle est appelé « cercle inscrit » dans le triangle.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm. En appliquant le théorème de Pythagore, nous avons: AC =? (AH² + CH²) =? (2² + 6²) =? 40 = 6,32 cm.
► Un triangle isocèle possède deux côtés égaux et deux angles égaux. ► Si un triangle possède deux angles égaux, alors il est isocèle !
Un triangle avec deux angles de même mesure est un triangle isocèle. Un triangle isocèle a au moins deux côtés de la même longueur. Un triangle équilatéral a trois côtés de la même longueur. Un triangle isocèle a au moins deux côtés de la même longueur.
En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base.
Cercle passant par 3 points
Mais si nous prenons les points B et C, le centre doit être sur la médiatrice de [BC]. Ainsi, le centre O du cercle cherché doit être à l'intersection de la médiatrice de [AB] et celle de [BC], ce qui donne OA = OB = OC et donc O est aussi sur la médiatrice de [AC].
Tracé un arc de cercle en évitant un obstacle central. Choisir les trois points A, B et C. Construire le gabarit ACB avec deux liteaux, un troisième en travers maintiendra l'ouverture de l'angle constante. Tous les points C tels que ce gabarit vise les points A et B sont sur le cercle.
On appelle cercle circonscrit à un triangle le cercle qui passe par les 3 sommets de ce triangle. Son centre est toujours le point de concours des médiatrices des 3 côtés de ce triangle.
Cercle qui englobe un polygone par ses sommets, en géométrie. Les sommets sont ainsi des points du cercle circonscrit.
Le côté [ AB] est opposé au sommet C . Le sommet A est opposé au côté [ BC ] . Un triangle isocèle est un triangle qui possède deux côtés de même longueur. Le côté [ AB] s'appelle la base.
Employer un rapporteur. Tracez le premier côté. Utilisez le bord droit du rapporteur ou une règle pour tracer un segment de droite d'une longueur adéquate. C'est le premier côté du triangle, et les deux autres côtés auront la même longueur.
Méthode avec une équerre
Déposer un côté de l'angle droit de l'équerre sur la base du triangle. Aligner l'autre côté de l'angle droit de l'équerre avec le sommet du triangle. Tracer le segment qui part du sommet et qui rejoint perpendiculairement la base du triangle. Ce segment est la hauteur du triangle.
Triangle isocèle
La somme des angles d'un triangle est égale à 180°. On a donc : + + = 180°. Donc + = 180° − 78° = 102°.
Comme ils sont égaux, ces deux angles mesurent chacun 45°. Ainsi, Triangle rectangle isocèle — Les angles d'un triangle rectangle isocèle ont pour mesures respectives 90°, 45° et 45°.
Théorème de pythagore dans un triangle isocèle
En fait lorsqu'il s'agit d'un triangle isocèle rectangle la mesure des cotés de l'angle droit est égale à : √2/2 × la mesure de l'hypoténuse.
Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
Dans le cas d'un triangle, il suffit donc d'additionner les longueurs de ses trois côtés pour calculer son périmètre. Ce principe est valable pour un triangle quelconque, équilatéral, isocèle ou rectangle.