Comment Trigonaliser une matrice ?

Interrogée par: Marcel-Aimé Normand  |  Dernière mise à jour: 15. Oktober 2022
Notation: 4.5 sur 5 (23 évaluations)

Pour trigonaliser une matrice A ,
  1. on cherche les valeurs propres en calculant le polynôme caractéristique de A ;
  2. pour chaque valeur propre, on cherche une base de vecteurs propres associés;

Comment faire la réduction d'une matrice ?

Réduire une matrice consiste à chercher une matrice semblable la plus simple possible : dans le meilleur des cas, une matrice diagonale (dont tous les éléments non diagonaux sont nuls — il s'agit alors d'une diagonalisation), sinon une matrice triangulaire supérieure (dont tous les éléments sous-diagonaux sont nuls — ...

Comment reconnaître qu'une matrice est diagonalisable ?

La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.

Comment diagonaliser une matrice 4x4 ?

Re : Diagonalisation de matrice 4*4

Donc c'est aussi det(B-xI). Les valeurs propres sont bien 1,1,-1,-1. Ensuite pour diagonaliser il faut trouver les vecteurs propres de 1, il faut résoudre Bv = 1v soit (B-1I)v = 0 (il y en a 2). Même chose pour -1: résoudre Bv = -1v soit (B+1I)v = 0, il y en a 2 aussi.

Comment diagonaliser un endomorphisme ?

Un endomorphisme u de E est diagonalisable s'il existe une base de E formée de vecteurs propres pour u .
...
On procède en plusieurs étapes.
  1. On calcule le polynôme caractéristique de A , CA(X)=det(A−XIn) C A ( X ) = det ( A − X I n ) .
  2. On factorise ce polynôme afin trouver les valeurs propres λ1,…,λp λ 1 , … , λ p .

Trigonalisation de matrices - partie 1

Trouvé 29 questions connexes

Quand Est-ce que une matrice est Trigonalisable ?

Une matrice est trigonalisable si et seulement si son polynôme caractéristique est scindé dans K[X]. En particulier, si K est algébriquement clos, toute matrice carrée à coefficients dans K est trigonalisable et donc aussi tout endomorphisme d'un K-espace vectoriel de dimension finie.

Quand une matrice n'est pas diagonalisable ?

Re : Quand une matrice n'est pas diagonalisable ? Quand on trouve une valeur propre double (ou d'ordre r) on regarde si le sous espace propre correspondant est de dimension 2 (ou r). Si la réponse est non, alors la matrice n'est pas diagonalisable.

Comment trouver la Comatrice ?

Déterminant : si n ≥ 2, det(comA) = (detA)n1. Comatrice de la comatrice : si n ≥ 2, com(comA) = (detA)n2 A.

Comment diagonaliser une matrice 3 * 3 ?

Il faut donc trouver tous les sous-espaces propres et additionner leurs dimensions pour savoir si une matrice est diagonalisable ou pas. Prenons par exemple une matrice 3 x 3 notée M. On nous dit que les valeurs propres sont 4 et 9. Il n'y a donc que 2 valeurs propres pour un espace de dimension 3.

Comment calculer le déterminant d'une matrice 3x3 ?

Additionnez les trois cofacteurs.

Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.

C'est quoi une matrice scalaire ?

Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.

Comment faire une diagonalisation ?

Pour diagonaliser une matrice, une méthode de diagonalisation consiste à calculer ses vecteurs propres et ses valeurs propres. La matrice diagonale D est composée des valeurs propres. La matrice inversible P est composée des vecteurs propres dans le même ordre de colonnes que les valeurs propres associées.

Est-ce que la matrice nulle est diagonale ?

La matrice carrée nulle est non-inversible et diagonalisable. Elle est même diagonale. En revanche une matrice carrée est inversible si et seulement si elle n'admet pas 0 pour valeur propre.

Comment Echelonner les matrices ?

En algèbre linéaire, une matrice est dite échelonnée en lignes si le nombre de zéros précédant la première valeur non nulle d'une ligne augmente strictement ligne par ligne jusqu'à ce qu'il ne reste éventuellement plus que des zéros.

Comment échelonné et réduire une matrice ?

Une matrice est sous forme échelonnée réduite (FER) si elle satisfait aux trois conditions suivantes :
  1. À chaque ligne, l'élément non nul le plus à gauche est 1 et les autres éléments de la colonne qui contient ce 1 sont tous nuls. ...
  2. Le pivot de chaque ligne est à la droite des pivots des lignes supérieures.

Comment rendre une matrice échelonnée ?

Définition - Une matrice est échelonnée si le nombre de 0 au début de chaque ligne est strictement croissant quand on passe d'une ligne à la suivante. Le premier élément non nul de chaque ligne dans une matrice échelonnée s'appelle le pivot.

C'est quoi une matrice diagonale ?

Matrice diagonale

La diagonale principale d'une matrice carrée (ou d'un tableau carré de nombres) est l'ensemble des éléments dont l'indice de ligne et l'indice de colonne sont égaux. Une matrice est diagonale si tous les termes en dehors de sa diagonale principale dont nuls.

Comment diagonaliser une matrice 2 2 ?

2. A est diagonalisable s'il existe une matrice inversible P telle que P−1AP = ∆, où ∆ est diagonale. 3. v = (x y ) , v = (0 0 ) est un vecteur propre pour A, de valeur propre λ, si Av = λv.

Quand A est diagonalisable ?

Le déterminant d'une matrice diagonale est le produit des coefficients diagonaux. Le produit de deux matrices diagonales est une matrice diagonale. est dite diagonalisable si elle est semblable à une matrice diagonale.

Comment trouver l'adjointe d'une matrice ?

Si A est une matrice carrée, alors det(A*) = det A. Si M = M*, alors la matrice est dite hermitienne ou auto-adjointe. Si M = –M*, alors la matrice est dite antihermitienne (en). Si M M* = M* M, alors la matrice est dite normale.

Comment trouver le mineur d'une matrice ?

Comment calculer les mineurs d'une matrice ? Pour une matrice carrée d'ordre 2, trouver les mineurs c'est calculer la matrice des cofacteurs sans les coefficients. Pour les matrices de taille supérieure comme 3x3, calculer les déterminants de chaque sous-matrice.

Comment calculer l'inverse d'une matrice d'ordre 3 ?

Pour cela, multipliez M et M-1. La théorie veut que : M x M-1 = M-1 x M = I, I étant la matrice identité, c'est-à-dire une matrice dans laquelle la diagonale est constituée de 1, les autres valeurs étant des 0.

Pourquoi diagonaliser ?

La diagonalisation d'un endomorphisme permet un calcul rapide et simple de ses puissances et de son exponentielle, ce qui permet d'exprimer numériquement certains systèmes dynamiques linéaires, obtenus par itération ou par des équations différentielles.

Comment trouver les vecteurs propres ?

Comment calculer les vecteurs propres d'une matrice ? Pour trouver/déterminer des vecteurs propres , prendre M une matrice carré d'ordre n et λi ses valeurs propres. Les vecteurs propres sont les solutions du système (M−λIn)→X=→0 ( M − λ I n ) X → = 0 → avec In la matrice identité.

Comment montrer que la matrice est inversible ?

Définition 1 : Une matrice A ∈ Mn(R) est dîte inversibles'il existe une matrice B ∈ Mn(R) telle que : AB = In et BA = In Si B existe, elle est appelée inverse de A et notée A−1.

Article précédent
Quel alcool est le plus rentable ?
Article suivant
Quelle odeur chasse les fourmis ?