Appelé Cos phi ou facteur de puissance
C'est le cosinus de l'angle entre la tension et le courant, on le calcule en effectuant la division de la puissance réelle (Watt) par la puissance apparente (VA).
Le cosinus φ est égal au rapport de la puissance active (P) sur la puissance apparente (S). Donc un récepteur avec un facteur de puissance (cosinus phi) égale à 1 ne consommera aucune énergie réactive à contrario ce même recepteur avec un cosinus φ inférieur à 1 conduira à une consommation d'énergie réactive.
Il y a donc intérêt à avoir un bon Cos phi (Cos phi proche de 1 d'où un angle phi petit) car si le Cos phi est petit (déphasage important) pour une puissance wattée donnée il faudra fournir une puissance S plus grande d'où une intensité plus grande.
sin phi = cos (pi/2) - phi, et cos phi = sin (pi/2) - phi, ou effectivement des tables, tout dépend de l'exigence du calcul.
Le principe de la conservation de l'énergie est appliqué : la puissance active totale est égale à la somme des puissance actives des trois récepteurs élémentaires P = P1 + P2 + P3. Avec :P : puissance active du récepteur triphasé (en W).
Dans le cas de charge purement résistive, comme le chauffage électrique, l'éclairage incandescent, petit électroménager (cafetière, grille-pain,...), le cos phi est égal à 1, donc il n'y a pas de déphasage entre U et I, l'angle phi est égal à 0. Le cos phi vaut 1 (cos 0 = 1). Le sin phi vaut 0 (sin 0 = 0).
La valeur efficace est la racine carrée de la moyenne du carré de la fonction périodique f(t). En régime sinusoïdal, la valeur efficace est Ueff = Umax / √2. En régime sinusoïdal la puissance active vaut Pa = Veff.
Cos phi = mesure du déphasage entre tension et courant
Si le cosinus phi est différent de 1, par exemple égal à 0.8, l'installation va tirer plus de courant du réseau pour avoir la même puissance utile.
L'amélioration du facteur de puissance permet un dimensionnement réduit des transformateurs, des appareillages, des conducteurs, etc. ainsi qu'une diminution des pertes en ligne et des chutes de tension dans l'installation. Un facteur de puissance élevé permet l'optimisation des composants d'une installation.
1 Puissance absorbée PA: Le moteur reçoit le puissance électrique PA=U⋅I⋅ 3 ⋅cos quelque-soit le couplage. Cette puissance est transmise au stator de la machine qui est le siège de deux types de pertes.
La puissance de la batterie de condensateurs à installer (en tête d'installation) est de ce fait : Q (kvar) = 0,355 x P (kW). Cette approche simple permet une détermination rapide des condensateurs à installer, que ce soit en mode global, partiel ou individuel.
Notée avec la lettre P, sa formule est : P=U.I. cos φ, où U est la tension en volt, I l'intensité en ampère et φ le déphasage.
La tangente Phi (tg ϕ) est un indicateur de consommation d'énergie réactive. Elle est égale au rapport de la puissance réactive à la puissance active consommée.
Pour relever le facteur de puissance, il faut donc en général fournir de la puissance réactive grâce à des condensateurs. En effet si Q diminue alors tan φ=QP diminue donc l'angle φ diminue et cosφ=fP augmente. Nous savons que seul le condensateur parfait fournit de la puissance réactive.
Le calcul est très simple puisqu'il suffit de faire la multiplication entre la tension (en volt) et l'intensité du courant (en Ampère) fournies. Pour une tension de 230 V et d'intensité de courant de 40 Ampères. La puissance est de 230 V x 40 A qui donne un résultat de 9 200 VA ou 9.2 KVA.
La puissance utile ou puissance nominale d'un appareil est la quantité de chaleur transmise au fluide caloporteur par convection et/ou rayonnement par unité de temps, exprimée en kilowatt (kW) dans les conditions d'essais suivant les normes en vigueur (allure de fonctionnement nominale).
Cosφ est l'angle de phase entre la tension et l'intensité. Cosφ est aussi appelé facteur de puissance (PF). La consommation électrique P1 peut être calculée à l'aide des formules suivantes, selon que le moteur est monophasé ou triphasé.
Quelle puissance choisir ? Avec une installation EDF triphasé, la puissance minimale est 9 kVA (chaque phase est alors de puissance 3 kVA) mais la puissance 18 kVA (1 phase = 6 kVA) est également fréquente.
Pour relever le cosφ il suffit donc de réduire la puissance réactive (Q1). Or un condensateur à la propriété de produire de la puissance réactive (QC) venant compenser et ainsi réduire la puissance réactive d'une installation (Q1).