Trouver la règle sous la forme y=ax+b y = a x + b des 2 branches. Trouver les coordonnées du sommet situé à l'intersection des 2 branches à l'aide de la méthode de comparaison. Déterminer le signe du paramètre a en analysant l'ouverture de la fonction.
Une règle d'une fonction est l'expression qui définit la relation qui existe entre chaque valeur de l'ensemble de départ (domaine) d'une fonction et un élément de l'ensemble d'arrivée (image).
La règle d'une fonction cosinus est f(x)=acos(b(x−h))+k.
Lorsqu'on connait 2 points de la fonction qui ont la même ordonnée (même coordonnée en y ), il est possible de trouver la règle sous la forme canonique (f(x)=a(x−h)2+k). ( f ( x ) = a ( x − h ) 2 + k ) .
Important! Pour trouver la règle d'une fonction rationnelle, il faut toujours utiliser l'équation sous la forme canonique simplifiée, c'est-à-dire f(x)=ax−h+k.
De manière plus rigoureuse, on dit qu'une fonction définie sur A sous-ensemble de ℂ, par exemple, est une fonction nulle (ou est la fonction nulle de A) si c'est la restriction à A de la fonction nulle précédente (autrement dit, si ∀ x ∈ A, ƒ(x) = 0 et si ƒ n'est pas définie en dehors de A).
Propriété : Pour tout réel x : cos(−x) = cosx, la fonction cosinus est paire ; sin(−x) = −sinx, la fonction sinus est impaire ; cos(x + 2π) = cosx et sin(x + 2π) = sinx, les fonctions sinus et cosinus sont périodiques de période 2π.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.)
La fonction sinus est la fonction définie sur R qui, à tout réel x, associe le réel sin(x), où sin(x) désigne l'ordonnée du point M. La fonction cosinus est la fonction définie sur R qui, à tout réel x, associe le réel cos(x), où cos(x) désigne l'abscisse du point M.
Placer les points dans un plan cartésien. Calculer la pente de la droite passant par les 2 points qui sont situés du même côté du sommet (sur la même branche). Trouver la règle sous la forme y=ax+b y = a x + b des 2 branches.
On écrit f : x → ax. Cela signifie : f est la fonction linéaire qui, à tout nombre x, associe le nombre ax, appelé image de x par la fonction f. On écrit aussi : soit f définie par f(x) = ax.
On rappelle qu'une fonction affine f est représentée par une droite et admet une expression de la forme f\left(x\right)=ax+b. f est une fonction affine, elle a une expression de la forme f\left(x\right) = ax+b, avec : a le coefficient directeur de la droite. b l'ordonnée à l'origine.
m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
En analyse, la fonction sinus est une fonction de la variable réelle qui, à chaque réel α, associe le sinus de l'angle orienté de mesure α radians. C'est une fonction impaire et périodique.
Exemple : Dans un triangle TRI rectangle en R, on connaît IT = 8 et IR = 4. On cherche l'angle de sommet T. IR est le côté opposé au sommet T et IT l'hypoténuse (côté opposé au sommet R). On utilise donc le sinus.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Pour déterminer la periode d'une fonction trigonométrique, il faut déterminer le plus petit T positif tel que f(x) = f(x+T) pour tout x dans le domaine de définition de f. Pour les fonctions trigonométriques de base, la période de sin(x) et de cos(x) est 2*pi, et la période de tan(x) est pi.
Dans un triangle rectangle, le sinus d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur de l'hypoténuse.
Quant au cosinus, c'est tout simplement le sinus du complémentaire (de l'angle) : « co- » vient du latin cum, qui signifie « avec ». La tangente, elle, vient de ce qu'elle mesure une portion d'une tangente au cercle trigono- métrique.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = –2. L'équation de la droite (d2) est donc : y = x – 2.
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
Pour déterminer le (ou les) antécédent(s) éventuel(s) de a, on trace la droite (d):y=a, on lit les abscisses des points d'intersection de (Cf) et de (d), ce sont les antécédents !