Si on connaît les coordonnées (a ; b) et (c ; d) de deux points d'une droite, on peut calculer son coefficient directeur m. On peut ensuite écrire immédiatement qu'une équation de cette droite est y - b = m(x - a).
Cette équation réduite est de la forme y = mx + p. On calcule la valeur de m : . On calcule la valeur de l'ordonnée à l'origine p, à partir des coordonnées du point A(2 ;-3). Comme A appartient à (d3), il vérifie l'équation y = –2x + p.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
Trouver l'équation d'une droite
Exemple : Déterminer l'équation de la droite (AB) qui pasees par les points A(-2 ; 9) et B(1 ; 3). Méthode : Les points A et B n'ont pas la même abscisse. * L'équation de la droite est de la forme y = ax + b. (Il faut déterminer a et b).
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Théorème Soit une droite d de coefficient directeur m. Il existe un unique nombre p tel que l'équation de d s'écrit y = mx + p .
En utilisant la formule. Une équation cartésienne de droite est de la forme ax+by+c=0. On peut déterminer une équation cartésienne de la droite \left(d\right) lorsque l'on connaît un point de la droite et un vecteur directeur de la droite.
Un coefficient, c'est le nombre de fois qu'une note compte. Par exemple, si vous obtenez un 12 en français coefficient 5, c'est comme si vous aviez obtenu cinq 12/20. Plus le coefficient est élevé, plus il aura un impact sur la moyenne.
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Exemple : Déterminer la fonction linéaire h telle que h(-1) = 4. h est une fonction linéaire donc il existe un coefficient a tel que : h(x) = ax. Donc h(-1) = a(-1) = -a. Or, h(-1) = 4 .
L'équation de la droite est donnée sous forme cartésienne : − 1 5 𝑥 + 3 𝑦 − 1 2 = 0 . Pour obtenir le coefficient directeur de la droite, il faut convertir l'équation ci-dessus sous la forme réduite 𝑦 = 𝑚 𝑥 + 𝑏 , où 𝑚 est le coefficient directeur de la droite et 𝑏 est l'ordonnée 𝑦 à l'origine.
Si l'équation de la trajectoire est de la forme (a et b ∈ R) : * Y = aX + b l'équation d'une droite, la trajectoire est rectiligne (ou droite) donc le mouvement est rectiligne; * Y = aX2 + b l'équation d'une parabole ; * (X - a)2 + (Y - b)2 = R2 l'équation d'un cercle de rayon R et de centre O (a,b) dans le repère, ...
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P. P est le plan d'équation est normal à P.
(xB - xA ; yB - yA) est l'un des vecteurs directeurs de cette droite. Si une droite a pour équation réduite y =ax + b alors il suffit de déterminer deux points de cette droite pour trouver un vecteur unitaire.
Cela s'écrit : r = p + t(q − p), où r est le vecteur position du point R. Posons d = q − p : ce vecteur montre la direction de la droite (PQ) : on l'appelle vecteur directeur de la droite (PQ). L'équation vectorielle de la droite (PQ) s'écrit alors : r = p + td.
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
Il y a proportionnalité dans un tableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s'obtiennent en multipliant ceux de la première par un même nombre que l'on appelle coefficient de proportionnalité. Le prix de cerises vendues 2,70 € le kilogramme est proportionnel à leur masse.
Retenir Deux grandeurs sont proportionnelles si on peut obtenir toutes les valeurs de l'une en multipliant celles de l'autre par un même nombre non nul. Elles varient toujours dans la même proportion.
On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. ( )≠ 0;0 ( ). Cette équation est appelée équation cartésienne de la droite D.
On considère la droite (D) d'équation cartésienne 2x – 3y + 1 = 0. 1°) Déterminer un vecteur directeur de (D). 2x – 3y + 1 = 0 est de la forme ax +by + c = 0 avec a = 2; b = –3 et c =1. La propriété ci-dessus permet donc d'affirmer que le vecteur est vecteur directeur de (D).
Une équation est une égalité entre deux expressions mathématiques, donc une formule de la forme A = B, où les deux membres A et B de l'équation sont des expressions où figurent une ou plusieurs variables, représentées par des lettres.
Pour déterminer l'équation de la tangente d'une courbe représentative en un point donné, il y a une formule prête à l'emploi. La formule pour l'équation réduite de la tangente de en est donnée par : y = f ′ ( a ) ( x − a ) + f ( a ) Voyons maintenant comment l'utiliser avec un exemple concret.
Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
Si la trajectoire est une droite, on dira que le mouvement est rectiligne. Si la trajectoire est un cercle, on dira que le mouvement est circulaire. Si la trajectoire est quelconque, on dira que le mouvement est curviligne.