Un diviseur est un nombre avec lequel tu peux diviser un autre nombre en n'ayant pas le reste. Le nombre 20 a donc six diviseurs: 20, 10, 5, 4, 2 et 1.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Les tables ci-dessous listent tous les diviseurs des entiers de 1 à 1300. Un diviseur d'un entier n est un entier m, tel que n/m est encore un entier (qui est aussi nécessairement un diviseur de n). Par exemple, 3 est un diviseur de 21, car 21/3 = 7 (et 7 est aussi un diviseur de 21).
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100.
Par exemple, les diviseurs positifs de 30 sont, dans l'ordre : 1, 2, 3, 5, 6, 10, 15 et 30. Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Les diviseurs de 25 sont 1, 5 et 25.
De fait, 200 est composé et possède exactement douze diviseurs : 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100 et 200. Mais cette propriété n'établit pas un record pour lui car 60, qui est plus petit, possède lui aussi douze diviseurs.
Les diviseurs de 90 sont : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18.
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.
Les diviseurs entiers (positifs) de 12 sont {1, 2, 3, 4, 6, 12}.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42. Les diviseurs de 51 sont : 1,3,17,51. Les diviseurs communs de 42 et 51 sont 1 et 3, donc 42 et 51 ne sont pas premiers entre eux.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5. Le nombre de diviseurs de 22 est 3 ; celui de 32 est 3 et celui de 5 est 2.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
b) 284 = 1 x 284 284 = 2 x 142 284 = 4 x 71 Donc tous les diviseurs de 284 sont 1, 2, 4, 71, 142 et 284.
Tous les diviseurs de 60 sont : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 Tous les diviseurs de 100 sont : 1, 2, 4, 5, 10, 20, 25, 50, 100 Les diviseurs communs à 60 et 100 sont : 1, 2, 4, 5, 10, 20 Le plus grand diviseur commun à 60 et 100 est 20.
Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.