Comment trouver les solutions d'une équation du second degré ?

Interrogée par: Richard Guillet  |  Dernière mise à jour: 10. November 2024
Notation: 4.2 sur 5 (29 évaluations)

Il faut suivre les étapes suivantes pour résoudre une équation du second degré du type ax2 + bx + c = 0.
  1. Établir l'équation du polynôme. ...
  2. Calculer le discriminant Δ (delta) du polynôme. ...
  3. Étudier le signe du discriminant Δ. ...
  4. Calculer la (ou les) solutions.

Quelles sont les solutions d'une équation du second degré ?

Équation du second degré

Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.

Comment trouver les solutions d'un polynôme du second degré ?

➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.

Comment trouver une équation du second degré ?

Définition : Une équation du second degré est une équation de la forme ax2 + bx + c = 0 où a, b et c sont des réels avec a ≠ 0. Une solution de cette équation s'appelle une racine du trinôme ax2 + bx + c . Exemple : L'équation 3x2 − 6x − 2 = 0 est une équation du second degré.

Comment calculer les solutions de Delta ?

Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.

J'ai trouvé la solution à travers deux méthodes simples...

Trouvé 44 questions connexes

Comment on fait pour trouver la solution de l'équation ?

Pour déterminer la solution de l'équation, il faut remplacer l'inconnue par chacune des valeurs proposées et voir celle pour laquelle l'égalité est vérifiée. Si la racine est la bonne alors nous obtiendrons la même valeur numérique dans chaque membre de l'équation.

Comment résoudre une équation sans utiliser le discriminant ?

Il existe un moyen de résoudre une équation du second degré sans passer par le calcul du discriminant: la factorisation. Cette méthode consiste à trouver une relation entre le produit de a par c d'une part, et b de l'autre.

Comment trouver les solutions d'une inéquation ?

Résoudre une inéquation consiste à trouver l'ensemble des valeurs par lesquelles on peut remplacer la variable pour obtenir une inégalité vraie. Par exemple : La solution x=1 est une des solutions de l'inégalité 2x+1<5, car en la remplaçant dans cette dernière on obtient 2×1+1<5 qui est une inégalité vraie.

Quand delta est égal à 0 ?

Si Δ = 0 alors l' équation admet une solution double x = −b/2a. Si Δ >0 alors l' équation admet deux solutions distinctes x' et x' telles que: x' =( −b + √Δ ) / 2a et x'' =(

Quel est le discriminant de l'équation suivante 2x² 5x 3 0 ?

b. 2x² + 5x – 3 est un polynôme du second degré de la forme ax2 + bx + c, avec a = 2, b = 5 et c = –3. Son discriminant est ∆ = b² – 4ac = 5² – 4 × 2 × (–3) = 49.

Comment résoudre un système de deux équations à deux inconnues ?

Pour résoudre un système de deux équations linéaires à deux inconnues par la méthode de substitution, il suffit d'isoler l'une des inconnues dans l'une des équations et de remplacer cette inconnue par sa valeur dans l'autre équation.

Quelle est la formule de la forme canonique ?

Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .

C'est quoi le discriminant d'une équation ?

(Algèbre) Notion algébrique intervenant dans la résolution d'une équation du second degré, plus connue sous le nom de delta (Δ). (Par extension) Outil permettant de déterminer si les racines d'un polynôme de degré supérieur à 2 sont multiples.

Comment déterminer les réels à B et C d'un polynôme ?

3.1 Factorisation d'un polynôme

Déterminer les réels a, b et c tels que, pour tout x de R, on ait : f (x) = (x −1)(ax2 +bx +c). Réponse : pour tout x de R : On identifie les coefficients des termes de même degré.  a b c = = = 1 −1 2 Conclusion : pour tout x de R, f (x) = (x −1)(x2 −x +2).

Comment factoriser un polynôme de degré 2 ?

Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.

C'est quoi le discriminant réduit ?

Si on définit b' comme l'entier vérifiant l'égalité b = 2b', on simplifie les calculs : Définition du discriminant réduit — Le discriminant réduit est la valeur Δ' définie par : Le discriminant est égal à quatre fois le discriminant réduit qui est donc de même signe que le discriminant.

Comment trouver les racines d'un polynome du second degré ?

Factoriser, dans des cas simples, une expression du second degré connaissant au moins une de ses racines. Utiliser la forme factorisée (en produit de facteurs du premier degré) d'un polynôme de degré 2 pour trouver ses racines et étudier son signe. Résoudre une équation de la forme x2 = k, avec k > 0.

Quand utiliser le discriminant ?

Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes. Son usage permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois ou celle des nombres algébriques.

Quel est la différence entre une équation et une inéquation ?

Une équation est une égalité entre deux expressions littérales contenant une ou plusieurs inconnues. Une inéquation est une inégalité entre deux expressions littérales contenant une ou plusieurs inconnues.

Comment résoudre une équation qui est égale à 0 ?

  1. On applique tout simplement la règle du produit nul. A×B=0 signifie A=0 ou B=0.
  2. Puis on résout chaque équation séparément.

Comment résoudre une équation avec la valeur absolue ?

Pour tout nombre réel n, la valeur absolue de n est la distance entre 0 et n, elle est donc égale à la valeur absolue de -n. Pour résoudre une équation contenant des valeurs absolues comme par exemple | x - 5| = 10, on doit donc résoudre l'équation x - 5 = 10 mais aussi l'équation - ( x - 5 ) = 9.

Quand l'équation n'a pas de solution ?

On dit que les équations x² - 5x = 0 et x(x - 5) = 0 sont équivalentes. donc x = 0 ou x - 5 = 0 et il n'y a pas d'autre solution.

Comment savoir si une équation n'admet pas de solution ?

Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.

Comment savoir si une équation n'a pas de solution ?

Lorsque la valeur absolue est égale à un nombre positif |x+3|=5 | x + 3 | = 5 Comme 5 est un nombre positif, cette équation possède 2 solutions. Lorsque la valeur absolue est égale à un nombre négatif |x−4|=−25 | x − 4 | = − 25 Comme −25 est un nombre négatif, cette équation ne possède aucune solution.

Comment trouver un solution ?

Il s'agit de :
  1. Commencer par avoir une vision claire du problème à résoudre.
  2. Trouver les sources de ce problème.
  3. Rechercher des solutions simples et efficaces.
  4. Analyser des solutions afin d'établir un plan d'actions.
  5. Passer à l'action en évaluant les résultats.

Article précédent
Quelles sont les voitures de Neymar ?
Article suivant
Quand la bougie est noire ?