Équation du second degré
Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Définition : Une équation du second degré est une équation de la forme ax2 + bx + c = 0 où a, b et c sont des réels avec a ≠ 0. Une solution de cette équation s'appelle une racine du trinôme ax2 + bx + c . Exemple : L'équation 3x2 − 6x − 2 = 0 est une équation du second degré.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
Pour déterminer la solution de l'équation, il faut remplacer l'inconnue par chacune des valeurs proposées et voir celle pour laquelle l'égalité est vérifiée. Si la racine est la bonne alors nous obtiendrons la même valeur numérique dans chaque membre de l'équation.
Il existe un moyen de résoudre une équation du second degré sans passer par le calcul du discriminant: la factorisation. Cette méthode consiste à trouver une relation entre le produit de a par c d'une part, et b de l'autre.
Résoudre une inéquation consiste à trouver l'ensemble des valeurs par lesquelles on peut remplacer la variable pour obtenir une inégalité vraie. Par exemple : La solution x=1 est une des solutions de l'inégalité 2x+1<5, car en la remplaçant dans cette dernière on obtient 2×1+1<5 qui est une inégalité vraie.
Si Δ = 0 alors l' équation admet une solution double x = −b/2a. Si Δ >0 alors l' équation admet deux solutions distinctes x' et x' telles que: x' =( −b + √Δ ) / 2a et x'' =(
b. 2x² + 5x – 3 est un polynôme du second degré de la forme ax2 + bx + c, avec a = 2, b = 5 et c = –3. Son discriminant est ∆ = b² – 4ac = 5² – 4 × 2 × (–3) = 49.
Pour résoudre un système de deux équations linéaires à deux inconnues par la méthode de substitution, il suffit d'isoler l'une des inconnues dans l'une des équations et de remplacer cette inconnue par sa valeur dans l'autre équation.
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
(Algèbre) Notion algébrique intervenant dans la résolution d'une équation du second degré, plus connue sous le nom de delta (Δ). (Par extension) Outil permettant de déterminer si les racines d'un polynôme de degré supérieur à 2 sont multiples.
3.1 Factorisation d'un polynôme
Déterminer les réels a, b et c tels que, pour tout x de R, on ait : f (x) = (x −1)(ax2 +bx +c). Réponse : pour tout x de R : On identifie les coefficients des termes de même degré. a b c = = = 1 −1 2 Conclusion : pour tout x de R, f (x) = (x −1)(x2 −x +2).
Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.
Si on définit b' comme l'entier vérifiant l'égalité b = 2b', on simplifie les calculs : Définition du discriminant réduit — Le discriminant réduit est la valeur Δ' définie par : Le discriminant est égal à quatre fois le discriminant réduit qui est donc de même signe que le discriminant.
Factoriser, dans des cas simples, une expression du second degré connaissant au moins une de ses racines. Utiliser la forme factorisée (en produit de facteurs du premier degré) d'un polynôme de degré 2 pour trouver ses racines et étudier son signe. Résoudre une équation de la forme x2 = k, avec k > 0.
Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes. Son usage permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois ou celle des nombres algébriques.
Une équation est une égalité entre deux expressions littérales contenant une ou plusieurs inconnues. Une inéquation est une inégalité entre deux expressions littérales contenant une ou plusieurs inconnues.
Pour tout nombre réel n, la valeur absolue de n est la distance entre 0 et n, elle est donc égale à la valeur absolue de -n. Pour résoudre une équation contenant des valeurs absolues comme par exemple | x - 5| = 10, on doit donc résoudre l'équation x - 5 = 10 mais aussi l'équation - ( x - 5 ) = 9.
On dit que les équations x² - 5x = 0 et x(x - 5) = 0 sont équivalentes. donc x = 0 ou x - 5 = 0 et il n'y a pas d'autre solution.
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
Lorsque la valeur absolue est égale à un nombre positif |x+3|=5 | x + 3 | = 5 Comme 5 est un nombre positif, cette équation possède 2 solutions. Lorsque la valeur absolue est égale à un nombre négatif |x−4|=−25 | x − 4 | = − 25 Comme −25 est un nombre négatif, cette équation ne possède aucune solution.