Trouver l'expression d'une
Pour déterminer les solutions d'une équation de la forme f(x) = k, on lit les abscisses des points d'intersection de la courbe avec la droite horizontale d'équation y = k. Dans le cas d'une inéquation f(x) < k, on lit les abscisses des points de la courbe situés au-dessous de la droite d'équation y = k.
m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
Résoudre graphiquement l'équation , c'est déterminer les abscisses des points d'intersection des courbes et . Résoudre graphiquement une inéquation du type , c'est déterminer les abscisses des points de la courbe situés strictement en dessous de la courbe .
f est une fonction linéaire donc son expression algébrique est f(x) = ax où a est le coefficient de cette fonction linéaire. On a donc f(2) = a×2 et on sait que f(2) = 7, d'où 2a = 7 donc a = 7 2 = 3,5 f est donc la fonction linéaire de coefficient 3,5.
f étant affine, son expression algébrique est de la forme f(x) = ax+b d'après la définition des fonctions affines.
Une équation du second degré est une équation dont la forme développée est 𝑎 𝑥 + 𝑏 𝑥 + 𝑐 = 0 , où 𝑥 est la variable 𝑎 , 𝑏 et 𝑐 sont des constantes telles que 𝑎 ≠ 0 .
Une équation du second degré à deux inconnues y=ax2+bx+c (a≠0) est représentée dans le plan cartésien par une parabole. Un point appartient à cette parabole si et seulement si ses coordonnées vérifient l'équation de la parabole. Par exemple, considérons la parabole P:y=2x2+x−1.
Méthode 6 : Comment résoudre graphiquement l'équation f(x)=0 ? Pour résoudre l'équation f(x)=0, on trace Cf. Les abscisses des points d'intersection de Cf et de l'axe des abscisses sont les solutions !
Lorsqu'on cherche la règle d'une fonction valeur absolue, 3 cas sont possibles. Dans tous les cas, on utilise la forme canonique simplifiée : f(x)=a|x−h|+k. f ( x ) = a | x − h | + k .
f est une fonction polynôme de degré 2 si on peut l'écrire sous la forme : f(x) = ax² + bx + c où a, b et c sont trois réels avec a ≠ 0. Exemple : La fonction f définie par f(x) = 3x² - 5x + 2 est une fonction polynôme de degré 2.
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
Dans l'équation y=mx+b, y = m x + b , remplacer le paramètre m par la pente déterminée à l'étape 1. Dans cette même équation, remplacer x et y par les coordonnées (x,y) d'un des deux points donnés (au choix). Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine.
La représentation graphique d'une fonction polynôme du second degré définie sur par (avec a un réel non nul, b et c deux réels) est une parabole. Cette parabole admet un axe de symétrie vertical d'équation . Le sommet de la parabole est le point de la parabole d'abscisse .
Parler par paraboles, s'exprimer d'une manière obscure, détournée.
h = x 1 + x 2 2 . Pour trouver l'ordonnée du sommet (k), on remplace x par la valeur de h dans l'équation de la fonction. Calculer l'ordonnée à l'origine. Trouver le point situé à la même hauteur que l'ordonnée à l'origine.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
Une fonction polynôme de degré 2 f est définie sur ℝ par f (x) = ax2 + bx + c, où a, b et c sont des nombres réels donnés et a ≠ 0.
Etape 1 : Calcul du discriminant Δ = b² - 4ac.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Résoudre l'équation f(x) = g(x) consiste à déterminer tous les réels x de D qui ont la même image par f et par g. Propriété Graphiquement, les solutions de f(x) = g(x) sont les abscisses des points d'intersection des courbes représentatives de f et de g.
alors, le coefficient directeur de la droite (AB) se calcule par la formule a = y B − y A x B − x A .
→ Calcul du coefficient directeur :
par l'origine, son équation est y = kx + b, où k est le coefficient directeur de la droite et b l'ordonnée à l'origine. Si la droite passe par l'origine (zéro), alors b = 0. Le coefficient directeur a souvent une unité en physique chimie !
Une fonction affine est une fonction linéaire avec l'ordonnées à l'origine b = 0 b=0 b=0. Toute fonction affine et linéaire admet une droite comme représentation graphique. Toute droite est représentée par l'équation f ( x ) = a x + b f(x)=ax+b f(x)=ax+b.