Votre triangle, par exemple, a des côtés de 9 et 40 cm. L'hypoténuse H a donc 41 cm. H²= 9² + 40² = 1681, et H = sa racine carrée = 41. D'après le théorème de Pythagore, si un triangle est rectangle alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres cotés.
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
Le triangle rectangle isocèle
Un triangle avec deux angles de mesure quarante-cinq degrés et un angle de mesure quarante-vingt-dix degrés. La longueur de l'hypoténuse du triangle est racine carrée de deux fois k unités et la longueur des deux côtés est de k unités.
Le théorème de Pythagore
Étant donné un triangle isocèle ABC, on trace la hauteur h à partir du sommet C. Il va diviser la base AB en deux en obtenant deux côtés égaux. Posons H le point où la hauteur h rencontre la base AB. Les côtés AH et BH représenteront l'un des cathets des deux triangles rectangles.
Cette relation de Pythagore est importante car elle permet de calculer la longueur du troisième côté lorsqu'on connait la mesure des deux autres. Exemple: si b = 3 et h = 4, alors c² = 3² + 4² = 9 + 16 = 25 et c = 5.
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Il est possible de déterminer la mesure manquante dans un cylindre à partir de son aire. Pour ce faire, il faut se référer à la formule d'aire appropriée (aire totale, aire latérale ou aire des bases) et effectuer les opérations inverses afin de déterminer la mesure recherchée.
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.
Définition de hypoténuse nom féminin
Géométrie Le côté opposé à l'angle droit, dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (théorème de Pythagore).
Pour calculer MP, le côté opposé à l'angle \hat{N}, on utilise le sinus de cet angle. On obtient : MP = 3,08|3.08. 3. Pour calculer MN, le côté adjacent à l'angle \hat{N}, on utilise le cosinus de cet angle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Définition et propriété : Dans un triangle rectangle, le côté opposé à l'angle droit est le plus grand des trois côtés. On l'appelle l'hypoténuse du triangle. Si un triangle est rectangle alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs de ses deux autres côtés.
Théorème de Pythagore — Si un triangle ABC est rectangle en C, alors AB2 = AC2 + BC2.
Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°. Plus précisément, on peut dire que le triangle est rectangle isocèle en A.
Les angles d'un triangle isocèle. Un triangle isocèle a deux angles de même mesure. Un triangle avec deux angles de même mesure est un triangle isocèle.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Cas d'un triangle isocèle :
On veut calculer les angles \hat{O} et \hat{U}. Dans tout triangle isocèle, les deux angles à la base sont égaux. Donc \hat{U} = \hat{I} = 47°. On en déduit \hat{O} : \hat{O} = 180° – (47° + 47°) = 86°.
Comment calculer l'aire d'un triangle quand on a pas la hauteur ? Pour calculer l'aire d'un triangle quand on a pas la hauteur, tu peux utiliser la formule trigonométrique A = 1/2 * a * b * sin(c) si tu connais la longueur de deux côtés et l'angle entre les deux côtés.