Donc pour déterminer l'ensemble image d'une fonction du second degré, il suffit de connaître l'ordonnée du sommet de sa parabole représentative et de savoir si cette parabole est orientée vers le haut ou vers le bas.
RAPPEL : Calculer une image : Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
Pour ce faire, on calcule d'abord l'abscisse de ce point avec la formule : -b/2a. Dans notre fonction de type ax2 + bx -c, soit 3x2 + 6x -2, on a 3 = a, 6 = b et -2 = c. On calcule : -b/2a = -6/2 x 3 = -6/6, soit au final -1, l'abscisse du sommet X Source de recherche .
Calculons l'image de 3 par la fonction f. Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f. L'image de 4 par la fonction f est donc égal à -20.
L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f. Un nombre peut avoir plusieurs antécédents (voir les constructions sur GeoGebra sur le site). Donc -5 est un autre antécédent de 25 par la fonction f.
Pour déterminer l'image de 2 par f, on doit partir de l'abscisse 2, puis on lit l'ordonnée du point de la courbe correspondant. Par lecture, on obtient -3,5. Donc l'image de 2 par f est -3,5. Pour obtenir les antécédents d'un nombre b, on lit les abscisses des points de la courbe ayant pour ordonnée b.
L'image d'une fonction f correspond à l'ensemble des valeurs que peut prendre la variable dépendante, généralement y . Par abus de langage, il est possible de confondre le concept d'image et de codomaine en prétendant que ce sont des synonymes.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
Réponse. L'image de -7 par la fonction f est 17.
L'image de 6 par la fonction f est 12.
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Le seul antécédent de 12 par la fonction f est donc x = 4.
On cherche le ou les antécédents du nombre 2. on repère le nombre 2 sur l'axe des ordonnées et on dessine un chemin horizontal jusqu'à la courbe. on poursuit ensuite le chemin verticalement jusqu'à l'axe des abscisses et on lit le nombre cherché.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Pour une fonction donnée f : X → Y, l'ensemble de définition est X et l'ensemble d'arrivée est Y. L'image f(X) de X par f, aussi appelée l'image de f, est en général seulement un sous-ensemble strict de Y. On a f(X) = Y si et seulement si f est une surjection.
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
Réponse :pour calculer l'image d'un nombre, il suffit de remplacer x par la valeur souhaitée : f(3) = -5 × 3 = -15, donc l'image de 3 par f est -15. Exemple : Soit f la fonction linéaire définie par f(x) = 6x.
f) Quel nombre a pour image 16 ? 16 -4 = -4. C'est -4 qui a pour image 16 par f.
Pour que f(x)=0, il faut forcément que le numérateur soit nul. Donc il faut résoudre l'équation suivante: C'est une équation du 3e degré, mais avec une racine évidente en x=0, donc tu peux en tirer une équation du 2e degré, qu'il faut résoudre.
Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur R une fonction, notée f ' dont l'expression est f '(x) = 2x . Cette fonction s'appelle la fonction dérivée de f. Le mot « dérivé » vient du latin « derivare » qui signifiait « détourner un cours d'eau ».
Principe. Pour calculer l'image de f (par exemple), c'est à dir calculer f(2), on remplace x par 2 dasn l'expression de f(x), tout simplement.
Re: Calculer l'image d'une fraction
Pour calculer l'image de 1√2 par la fonction f, tu dois, dans l'expression de f(x), remplacer x par 1√2. Ensuite au dénominateur,tu auras une fraction moins un nombre. Tu dois alors réduire au même dénominateur.
Les antécédents de 0 par f sont \dfrac{1}{2} et 4. L'antécédent de 0 par f est 4. L'antécédent de 0 par f est −4. 0 n'admet pas d'antécédent par f.