Déterminez la pente avec deux points. Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
La pente a pour valeur 0. Lorsque x augmente de 1, y ni augmente, ni diminue. L'ordonnée à l'origine a pour valeur -4. Cette relation peut souvent être représentée par l'équation y = b 0 + b 1x, où b 0 désigne l'ordonnée à l'origine et b 1 la pente.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
Règle. On détermine la valeur de l'ordonnée à l'origine de la droite en calculant la valeur de y lorsque x=0. x = 0. On détermine la valeur de l'abscisse à l'origine de la droite en calculant la valeur de x lorsque y=0.
Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal. L'autre nombre est l'ordonnée. Abscisse et ordonnée sont les coordonnées d'un point : on cite toujours l'abscisse avant l'ordonnée.
L'ordonnée à l'origine est l'ordonnée qui se lit à l'origine (quand l'abscisse vaut 0). Le coefficient directeur correspond à la pente de la droite.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = –2. L'équation de la droite (d2) est donc : y = x – 2.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Utilisez l'un des points de l'équation y = mx + b. Insérez les coordonnées de l'un des points dans l'équation où m est la pente. Ensuite, résolvez pour b, qui est l'intersection de l'axe des ordonnées (Y) de la ligne qui relie les deux points.
Définition de l'abscisse d'un point
Sur un axe gradué, on repère chaque point grâce à un nombre appelé son abscisse. Exemple : Sur l'axe gradué précédent, L'abscisse de A est 1, l'abscisse de H est 4, l'abscisse de T est 1,5 et l'abscisse de S est 6,25.
Définition 1 : Un repère orthogonal du plan est composé de deux droites graduées perpendiculaires et de même origine. L'une horizontale est appelée axe des abscisses et l'autre verticale est appelée axe des ordonnées.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y. L'équation représente une droite dont la pente est 3 3 et dont l'ordonnée à l'origine est -4 4.
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Le point A est associé à 2 nombres relatifs (2 et -3) qui sont ses coordonnées: Le 1er nombre (2) est l'abscisse: il indique la position sur l'axe horizontal. Le 2e nombre (-3) est l'ordonnée: il indique la position sur l'axe vertical.
En géométrie cartésienne, l'ordonnée à l'origine du graphe d'une fonction désigne la valeur de l'ordonnée y lorsque l'abscisse x vaut 0. En d'autres termes, c'est la valeur de l'ordonnée du point d'intersection entre la courbe de la fonction et la droite d'équation x = 0, aussi appelée axe des ordonnées.
Soient A(xA; yA) et B(xB; yB) deux points d'une droite D non verticale, le coefficient directeur (ou la pente) de cette droite se calcule grâce à la formule : m = yB − yA xB − xA .
L'ordonnée est la coordonnée verticale d'un point dans un repère cartésien. Elle indique la distance entre ce point et l'axe horizontal. Pour représenter l'ordonnée d'un point, on utilise généralement la lettre « y ».
L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan . On procède en deux étapes : D'abord déterminer un vecteur normal au plan Ensuite déterminer d . une valeur pour cette variable et on en déduit les deux autres .
Le coefficient directeur 𝑎 d'une droite passant par les points ( 𝑥 ; 𝑦 ) et ( 𝑥 ; 𝑦 ) est défini par 𝑎 = 𝑦 − 𝑦 𝑥 − 𝑥 . L'angle 𝛼 entre la droite et l'axe des abscisses est mesuré dans le sens trigonométrique.
(Géométrie) Position d'un point d'un plan par rapport au deuxième axe, en général représenté verticalement (axe des y), la position par rapport au premier axe étant l'abscisse.