Que faut-il faire pour trouver tous les diviseurs de n dans N∗ ? On utilise la propriété suivante : dans N, si d divise n, alors d ⩽ n. On examine tous les nombres entiers d. Pour chacun d'entre eux, on se pose les questions suivantes : Est-ce que d ⩽ n ? (sinon, ce n'est pas un diviseur de n) Est-ce que d divise n ?
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs. On décompose 180 ainsi : 22 × 32 × 5.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
L'ensemble des diviseurs de 132 est : 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132.
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
Ainsi, les entiers qui divisent à la fois les nombres 126 et 90 sont donc : - 1 ; - 2 ; - 3 ; - 2 × 3 = 6 ; - 32 = 9 ; - 2 × 32 = 18. c. D'après la question précédente, le grand entier qui divise à la fois les nombre 126 et 90 est 18.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Les multiples et diviseurs
Le multiple d'un nombre est le produit de ce nombre avec un nombre entier. Par exemple : 6×8=48 donc 48 est un multiple de 6 et de 8. Si 48 est un multiple de 6 et de 8 alors 6 et 8 sont des diviseurs de 48.
Pour trouver tous les diviseurs, on multiplie les branches de l'arbres. 1) a) Décompose en produit de facteurs premiers le nombre 126. b) A l'aide de la méthode précédente avec un arbre, fait apparaître tous les diviseurs de 126. 2) Mêmes questions avec le nombre 450.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42. Les diviseurs de 51 sont : 1,3,17,51. Les diviseurs communs de 42 et 51 sont 1 et 3, donc 42 et 51 ne sont pas premiers entre eux.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Un multiple d'un nombre entier naturel est le produit de ce nombre par un nombre entier naturel. Exemples : 0 ×98 = 0 ; 1×98 = 98 et 2×98 = 196 Donc 0 ; 98 et 196 sont des multiples de 98. L'égalité 196 = 2×98 traduit que 196 est un multiple de 2 ou de 98. Chaque nombre entier naturel est multiple de 1 et de lui-même.
Remarque 1 : 1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples. Par exemple, 12 = 12 × 1 donc 1 divise 12 et 12 est un multiple de ...
a) 220 : 1 = 220 220 : 2 = 110 220 : 4 = 55 220 : 5 = 44 220 : 10 = 22 220 : 11 = 20 Donc tous les diviseurs de 220 sont 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,et 220.
Les diviseurs de 90 sont : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90.
* On appelle PGCD à deux nombres entiers naturels non nuls le plus grand nombre entier naturel qui divise ces deux nombres. Si k est le PGCD de deux entiers naturels a et b, on note : k = PGCD ( a ; b ). Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 .
Somme des diviseurs propres de 284 : 1+2+4+71+142=220. A ce sujet, on attribue à Pythagore une citation : « Un ami est l'autre moi-même comme sont 220 et 284. » Le second couple de nombres amiables fut découvert par Pierre de Fermat (1601 ; 1665), il s'agit de 17296 et 18416.
Les diviseurs entiers (positifs) de 12 sont {1, 2, 3, 4, 6, 12}.