Ainsi, les entiers qui divisent à la fois les nombres 126 et 90 sont donc : - 1 ; - 2 ; - 3 ; - 2 × 3 = 6 ; - 32 = 9 ; - 2 × 32 = 18. c. D'après la question précédente, le grand entier qui divise à la fois les nombre 126 et 90 est 18.
a. On calcule : 126 = 2 × 63 = 2 × 7 × 9 = 2 × 32 × 7. On a aussi : 90 = 2 × 45 = 2 × 5 × 9 = 2 × 32 × 5.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Quelle formule doit-on saisir en cellule N2 pour calculer la température moyenne annuelle ? La formule est : = Somme (B2 :M2) /12 ou = Moyenne (B2 :M2) Calculer la température moyenne annuelle à Tours en 2019. La température moyenne à Tours, en 2019 était de 13,1° C.
Cette équation est nulle si x + 5 = 0 ou si x − 2 = 0. Les solutions de cette équation produit nul sont x = − 5 et x = 2. Ainsi, pour obtenir 0 à la fin, on peut choisir comme nombre de départ − 5 ou 2.
On peut entrer dans la cellule B3 la formule «=A3̂2 - 3*A3+2».
Donc le PGCD de 125 et 175 est 5×5 = 25, donc les diviseurs communs de 125 et 175 sont ceux de 25, c'est-à-dire : 1, 5 et 25.
2,3,5 sont des diviseurs communs à 60 et 90.
Le plus grand diviseur commun de deux ou plusieurs monômes
On trouve la décomposition maximale de chaque monôme, puis on cherche les facteurs communs apparaissant dans ces décompositions. Le monôme égal au produit de ces facteurs communs sera le plus plus grand commun diviseur des monômes.
Les diviseurs de 126 sont : 1 ; 2 ; 3 ; 6 ; 7 ; 9 ; 14 ; 18 ; 21 ; 42 ; 63 ; 126.
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2. 25 n'est pas divisible par 3. 3 est un nombre premier.
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Si l'on ne dispose pas de moyen automatisé (logiciel ou calculatrice), on peut toujours trouver « manuellement » le PGCD de 2 polynômes en transposant pour ces polynômes l'algorithme d'Euclide servant à trouver le PGCD de deux nombres entiers (voir ici comment on peut effectuer la division de deux polynômes).
Décomposer un nombre, c'est indiquer la position (la classe et le rang) de chacun des chiffres qui composent ce nombre. 42 603 = 4 × 10 000 + 2 × 1 000 + 6 × 100 + 3 × 1.
Recherche du PGCD de deux nombres entiers :
Méthode: on fait la liste de tous les diviseurs de chaque nombre, puis parmi ceux qui sont communs aux deux nombres, on prend le plus grand. - Les diviseurs de 60 sont : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 10 ; 12 ; 15 ; 20 ; 30 ; 60.
Remarque : Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97.
Quel est le plus grand commun diviseur des nombres 400, 122 et 98? 8.
1) 756 et 441 sont des multiples de 3, donc ils ne sont pas premiers entre eux. 2) 756 441 n'est donc pas irréductible. On calcule le PGCD de 756 et 441 (ce sera un multiple de 3) ; il s'agit de 63.
1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
On peut aussi définir une suite par récurrence, en donnant son premier terme et une relation entre différents termes de la suite. Par exemple, soit (un)n∈ la suite définie par : u0 = 3 et, pour tout entier naturel n : un+1 = 2un − 1 (*). Pour calculer u1, on fait n = 0 dans (*) : u1 = 2u0 − 1 = 2 χ 3 − 1 = 5.
Par exemple, pour créer dans la cellule C2 une formule qui multiplie la valeur contenue dans la cellule B2, vous taperez la formule suivante : =A2*B2.
Par exemple, on construit une suite v en disant – v1 = 1 : le terme d'indice 1 de la suite v est 1 ; – pour tout entier n ≥ 1, vn+1 = vn +3 : on construit chaque terme en ajoutant 3 au précédent. Le premier terme de cette suite est v1 = 1, le deuxième est v2 = v1 +3 = 1+3 = 4, le troisième est v3 = v2 +3 = 4+3 = 7 etc.
donc 561 est divisible par 3. 3 est donc un diviseur commun à 357 et 561.