Pour déterminer une primitive d'une fonction rationnelle, on décompose celle-ci en une somme d'une fonction polynôme et d'une fonction inverse. Exemple : Soit f\left ( x \right )=\frac{x^{2}+2}{x-3} définie sur ]3\, ;+\infty[. Elle peut s'écrire sous la forme : f\left ( x \right )=ax+b+\frac{c}{x-3}.
Si f est une fonction continue sur l'intervalle [a,b], alors f admet une primitive F définie pour tout x ∈ [ a , b ] x \in \left[a,b\right] x∈[a,b] par F ( x ) = ∫ a x f ( t ) d t F(x) = \int_{a}^{x}f(t)dt F(x)=∫axf(t)dt.
Ainsi, toutes les primitives de f (x) = 2x sont de la forme F (x) = x2 + C (C est une constante).
On parle souvent d'UNE primitive car chaque fonction en possède une infinité : dans la mesure où la dérivée d'une constante est nulle, l'expression f(x)=2x f ( x ) = 2 x peut avoir pour primitive aussi bien x2 que x2+1, x 2 + 1 , x2+200 x 2 + 200 ou x2−ln5.
Il y a des façons plus directes de calculer une primitive, en utilisant ce qu'on appelle une intégrale. En particulier, une primitive d'une fonction 𝑓 ( 𝑥 ) équivaut à l'intégrale indéfinie de 𝑓 ( 𝑥 ) . Ainsi, si 𝐹 ′ ( 𝑥 ) = 𝑓 ( 𝑥 ) , alors 𝐹 ( 𝑥 ) = 𝑓 ( 𝑥 ) 𝑥 + , d C où C est aussi appelée constante d'intégration.
F'(x) = G'(x) + m = f(x). Si F est une primitive de f sur I, alors (F + k)' = F' = f, donc F + k est aussi une primitive de f sur I. Réciproquement, soit G une primitive de f sur I. Alors G' = f = F', donc G' – F' = 0, soit encore (G – F)' = 0.
Ouvrir une page « calculs ». Définir la fonction (c'est plus pratique). Dans le menu « Analyse », choix 3 « Intégrale ». Ne pas remplir les paramètres a et b permet d'obtenir une primitive de la fonction f.
h a donc pour primitive g(x) + ln x + k, avec k réel constant. On a donc H(x) = x ln x – x + ln x + k. Ainsi H(1) = 1 ln 1 – 1 + ln 1 + k = k – 1.
Il n'y a pas de méthode donnant les primitives de √U pour le cas où U est une fonction quelconque. Il n'existe pas de formules générales d'intégration comme il existe des formules générales de dérivation. Tout au plus peut on trouver des cas particuliers, comme les formes U′U, U′U², etc.
La dérivée du produit uv étant donnée par u'v + v'u, uv est une primitive de u'v + v'u sur l'intervalle [a ; b].
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.
On peut noter l'ensemble des primitives d'une fonction avec le symbole d'intégration. Par exemple, l'ensemble des primitives de la fonction f ( x ) = 2 x est noté ∫ 2 x d x .
Une fonction F est une primitive d'une autre fonction f si et seulement si la dérivée F' de la fonction F est égale à f.
Les primitives de la fonction x ↦ sin x sont les fonctions x ↦ - cos x + C, celle de la fonction x ↦ cos x sont les fonctions x ↦ sin x + C et celles de la fonction x ↦ eˣ sont les fonctions x ↦ eˣ + C.
La première définition rigoureuse des intégrales et primitives des fonctions continues est due à Augustin-Louis Cauchy (1789-1857).
Pour déterminer l'aire du domaine délimité par l'axe des abscisses, la courbe représentative d'une fonction positive f et les droites d'équations x = a et x = b (a ≤ b), on cherche une fonction F telle que F ' = f. L'aire est alors F(b) − F(a). On dit que F est une primitive de f.
Une primitive de la division u' / u^n
On va donc calculer la dérivée de (u(x)^(-n+1))/(-n+1). La dérivée de ça c'est u'(x) pour commencer, c'est la partie facile, u'(x) que multiplie la dérivée de cette chose-là.
La principale méthode pour calculer une intégrale passe par la notion de primitive d'une fonction. La « primitivation » est l'opération qui, à partir d'une fonction f, donne une fonction F dérivable et dont la dérivée est égale à f : F′(x) = f(x).
deux primitives d'une même fonction, sur un intervalle, ne diffèrent que d'une constante. Soit G fonction définie sur I par G(x) = F(x)+k avec k réel. * Par addition, G est dérivable sur I. De plus : G'(x) = F'(x) = f (x) pour tout x de I donc G est une primitive de f sur I.
En particulier,si u > 0 : ∀a ∈ R, (ua)′ = αu′ua−1 Primitives des fonctions usuelles Dans chaque ligne, F est une primitive de f sur l'intervalle I. Ces primitives sont uniques `a une constante pr`es notée C. usur I est ln |u|.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle.
L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.