On cherche les coordonnées de deux points distincts A ( x A ; y A ) et B ( x B ; y B ) de la droite d . On sait alors que A B → est un vecteur directeur de d . Montrons que u → et A B → sont colinéaires. On sait que A B → ( x B − x A y B − y A ) et u → ( − b a ) .
Déterminer un vecteur directeur de (D). 2x – 3y + 1 = 0 est de la forme ax +by + c = 0 avec a = 2; b = –3 et c =1. La propriété ci-dessus permet donc d'affirmer que le vecteur est vecteur directeur de (D).
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
L'équation de la droite est donnée sous forme cartésienne : − 1 5 𝑥 + 3 𝑦 − 1 2 = 0 . Pour obtenir le coefficient directeur de la droite, il faut convertir l'équation ci-dessus sous la forme réduite 𝑦 = 𝑚 𝑥 + 𝑏 , où 𝑚 est le coefficient directeur de la droite et 𝑏 est l'ordonnée 𝑦 à l'origine.
On rappelle que l'équation vectorielle d'une droite est donnée par ⃑ 𝑟 = ⃑ 𝑟 + 𝐾 ⃑ 𝑑 , où ⃑ 𝑟 est le vecteur position d'un point quelconque de la droite, ⃑ 𝑑 est le vecteur directeur de la droite et 𝐾 est un scalaire quelconque.
On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. ( )≠ 0;0 ( ). Cette équation est appelée équation cartésienne de la droite D.
à partir d'une équation cartésienne du plan. Si le plan a pour équation cartésienne ax+by+cz=d, alors un vecteur normal du plan est le vecteur de coordonnées (a,b,c).
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Vecteur directeur :
Le vecteur directeur d'une droite n'est pas unique : deux points quelconques de la droite peuvent définir un vecteur directeur. Si on a deux vecteurs ⃗ u et ⃗ v directeurs de la droite (d), alors ⃗ u et ⃗ v sont colinéaires et on a ⃗ ⃗ det(u ,v )=0.
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ).
Ces vecteurs sont dits directeurs à la droite. L'exemple le plus simple est celui d'un repère (O;→i,→j) ( O ; i → , j → ) où l'axe des abscisses peut être défini par l'origine O et son vecteur directeur →i tandis que l'axe des ordonnées l'est par O et par →j .
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 2, car la droite coupe l'axe des ordonnées au point 2. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Définition - Le produit vectoriel de deux vecteurs →u et →v est le vecteur →u×→v qui satisfait les propriétés suivantes : →u×→v est perpendiculaire à →u et à →v; ‖→u×→v‖=‖→u‖‖→v‖|sinθ|
La norme d'un vecteur est sa longueur et peut être calculée en adaptant le théorème de Pythagore en trois dimensions. Si ⃑ 𝐴 = ( 𝑥 , 𝑦 , 𝑧 ) , alors ‖ ‖ ⃑ 𝐴 ‖ ‖ = √ 𝑥 + 𝑦 + 𝑧 .
Définition d'un vecteur
Un vecteur est un objet mathématique que l'on représente graphiquement sous forme d'une flèche. En effet, un vecteur est défini par sa longueur (longueur du segment), sa direction (position, orientation de la flèche) et son sens (vers la droite ou la gauche).
Une équation cartésienne de droite est de la forme ax+by+c=0. On peut déterminer une équation cartésienne de la droite \left(d\right) lorsque l'on connaît un point de la droite et un vecteur directeur de la droite.
Si on connaît un point et un vecteur directeur de la droite
Pour représenter une droite lorsque l'on connaît un point et un vecteur directeur, il suffit de placer le point connu et de placer un second point grâce au vecteur directeur.
Définition n°2 d'un plan :
Un plan est entièrement défini par la donnée d'un point A de l'espace et de deux vecteurs non colinéaires. On dit que est un couple de vecteurs directeurs du plan (P).
Si nous avons deux vecteurs u → = ( u x u y u z ) et v → = ( v x v y v z ) , la formule du produit vectoriel est donnée par u → ∧ v → = ( u 2 v 3 − u 3 v 2 u 3 v 1 − u 1 v 3 u 1 v 2 − u 2 v 1 ) Pour te rappeler de cette formule tu peux également considérer le produit vectoriel comme étant le déterminant de la matrice ...
Le produit vectoriel de deux vecteurs peut être calculé comme le déterminant d'une matrice trois fois trois où les éléments de la première ligne de la matrice sont les vecteurs unitaires 𝐢, 𝐣 et 𝐤 pointant respectivement dans les directions des 𝑥, 𝑦, et 𝑧.
La norme d'un vecteur est sa longueur. Nous pouvons calculer la norme de tout vecteur en deux dimensions en utilisant le théorème de Pythagore. La norme du vecteur 𝐯 est égale à la racine carrée de 𝑎 au carré plus 𝑏 au carré, où 𝑎 et 𝑏 sont les deux composantes du vecteur.