Pour une loi binomiale de n épreuves, on peut formaliser l'univers par {0 ;1}n. Soient k un entier naturel inférieur ou égal à n et X une variable aléatoire qui suit la loi binomiale de paramètres n et p. Alors P(X=k)=(nk)pk(1−p)n−k.
L'espérance et la variance d'une variable aléatoire X qui suit une loi binomiale de paramètres n et p sont obtenues grâce aux formules E(X)=np et V(X)=np(1−p).
En probabilité, la loi binomiale permet de décrire le nombre de succès dans une série d'expériences identiques et indépendantes, où il existe deux résultats possibles : succès ou échec. Elle est définie par deux paramètres : le nombre total d'expériences (n) et la probabilité de succès dans chaque expérience (p).
Quel que soit n, la variance d'une loi binomiale B(n, p) est maximale lorsque p = 0,5. Si par exemple n = 10, f(0,5) = 10 × 0,5 × (1 – 0,5) = 2,5. La variance de la loi binomiale B(10 ; p) est maximale pour p = 0,5 et vaut alors 2,5.
lorsque X suit une loi de probabilité "connue" (comme la loi binomiale par exemple), on dispose de formules. Par exemple, si X suit la loi binomiale de paramètres n et p alors l'espérance de X est E(X)=n×p.
La somme de toutes les probabilités dans une loi de probabilité est égale à 1. L'espérance 𝐸 ( 𝑋 ) d'une variable aléatoire discrète 𝑋 = { 1 ; 2 ; 3 , … , 𝑛 } qui a une loi de probabilité uniforme est 𝐸 ( 𝑋 ) = 𝑛 + 1 2 , où 𝑛 est le dernier entier consécutif de l'ensemble des valeurs possibles de 𝑋 .
La variance de la loi binomiale est donnée par l'expression n p ( 1 − p ) . Ici, (n\) est le nombre d'expériences et est la probabilité de réussite. Si la variance d'une variable aléatoire est petite, alors les valeurs de la variable sont souvent proches de l'espérance.
La loi de probabilité donnant le nombre de succès sur ces n répétitions est la loi binomiale de paramètres n et p (notée B(n;p)). Il s'agit en fait d'une généralisation de la loi de Bernoulli dans le cas où l'on répète plusieurs fois l'expérience.
Si la fréquence observée est dans l'intervalle de fluctuation, on accepte l'hypothèse selon laquelle le caractère A apparait avec une fréquence p dans le groupe. Si n'appartient pas à l'intervalle, on rejette l'hypothèse. Il faut noter que l'une ou l'autre de ces 2 conclusions possibles se font au risque ou seuil 5%.
On peut interpréter l'espérance mathématique de la variable comme le gain moyen que l'on peut espérer d'un jeu si l'on joue un très grand nombre de fois. C'est le « gain moyen ». Si E(x) = 0 le jeu est dit équitable, si E(x) > 0 le jeu et dit favorable (au joueur) et si E(x) < 0 le jeu et dit défavorable (au joueur).
De manière générale, la loi de Bernoulli est la loi de la variable aléatoire qui code le résultat d'une épreuve qui n'admet que deux issues (épreuve de Bernoulli) : 1 pour « succès », 0 pour « échec », ou quel que soit le nom qu'on donne aux deux issues d'une telle expérience aléatoire.
La loi binomiale négative est une loi de probabilité proche de la loi géométrique. Cette dernière s'applique à une variable discrète qui compte le nombre d'essais avant d'arriver à un succès (de probabilité p).
Une variable aléatoire X est une variable aléatoire de Bernoulli lorsqu'elle est à valeurs dans {0;1} où la valeur 1 est attribuée au succès. On dit alors que X suit la loi de Bernoulli de paramètre p. Autrement dit, on a P(X=1)=p et P(X=0)=1−p.
Approximation d'une loi binomiale par une loi de Poisson
Lorsque n prend de grandes valeurs, et que p est petit, la loi binomiale B(n , p) est approchée par la loi de Poisson P(np) (conservation de la moyenne). Les conditions d'approximation sont n ≥ 30, p ≤ 0,1 et n p < 15.
Formule de probabilité
n = Nombre d'issues favorables possibles. N = Nombre total d'issues possibles pour l'événement. Il est important de noter que le résultat de ce calcul se trouve toujours dans une fourchette comprise entre 0 et 1. Le résultat final est alors multiplié par 100 pour déterminer le pourcentage.
Bernoulli invente (découvre) la loi binomiale, souvent notée B(n,p) : il y a Cnk façons (nombre de combinaisons de k objets parmi n.)
C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance. La variance est l'écart carré moyen entre chaque donnée et le centre de la distribution représenté par la moyenne.
Soit Y la variable aléatoire qui désigne le nombre de passagers qui se présenteront pour leur vol. Comme il est connu qu'en moyenne seulement 95% des passagers se présenteront pour leur vol, la loi binomiale nous donne: P [ Y = 101 ] = ( 103 101 ) × ( 0 , 95 ) 101 × ( 0 , 05 ) 2 ≡ 0 , 073 86.
Qu'énonce le principe de Bernoulli ? L'énoncé du principe de Bernoulli est le suivant : « Dans un fluide s'écoulant horizontalement, la pression du fluide aux points où sa vitesse est élevée, est plus faible que la pression du fluide aux points où sa vitesse est plus faible. »
Par exemple, si un certain type d'événements se produit en moyenne 4 fois par minute, pour étudier le nombre d'événements se produisant dans un laps de temps de 10 minutes, on choisit comme modèle une loi de Poisson de paramètre λ = 10×4 = 40.
La formule de la variance est V= ( Σ (x-μ)² ) / N. On démontre que V= ( (Σ x²) / N ) - μ². Cette formule est plus simple à appliquer si on calcule la variance à la main.
On appelle probabilité conditionnelle la probabilité qu'un événement soit réalisé sachant qu'un autre a déjà ou non été réalisé. Les événements situés au moins en deuxième rang dans un arbre probabiliste dépendent de la réalisation, ou non, des événements du rang précédent.
Cela peut être calculé en utilisant la formule suivante : V a r ( 𝑋 ) = 𝐸 ( 𝑋 − 𝜇 ) , où 𝜇 = 𝐸 ( 𝑋 ) = ( 𝑥 × 𝑃 ( 𝑋 = 𝑥 ) ) est l'espérance de 𝑋 et 𝑥 représente toutes les valeurs que 𝑋 peut prendre.
La variance est l'espérance des carrés des écarts par rapport à l'espérance. Pour dire les choses plus simplement, V(X) =E((X−E(X)2). = E ( ( X − E ( X ) 2 ) .
La moyenne des résultats se rapprochent donc de l'espérance de la loi de probabilité. L'espérance est donc la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois.