Dans le cas d'échantillons indépendants, le test de Mann-Whitney permet de comparer deux populations. Les deux séries de valeurs sont mélangées puis ordonnées par valeurs croissantes. On identifie alors les rangs des individus du premier groupe et on calcule la somme des rangs de ces individus.
Pour pouvoir calculer un test U de Mann-Whitney, il faut disposer de deux échantillons aléatoires indépendants présentant au moins des caractéristiques à échelle ordinale. Les variables ne doivent satisfaire à aucune courbe de distribution.
Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente. Les observations des deux groupes sont combinées et ordonnées, et il leur est attribué un rang moyen en cas d'ex aequo. Le nombre d'ex aequo doit être petit par rapport au nombre total d'observations.
Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.
Interpréter les résultats: après avoir effectué le test de Wilcoxon, il est important d'interpréter les résultats.La valeur p indique la probabilité d'observer une différence aussi extrême que celle observée, en supposant que l'hypothèse nulle est vraie.Si la valeur p est inférieure au niveau de signification ( ...
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
Contentez vous de les décrire. Les raisons pour lesquelles des résultats particuliers sont observés (ou non) sont l'objet de la partie discussion. – Lorsque vous mentionnez vos variables dans le texte, ou qu'elles sont écrites dans vos tableaux ou figures, utilisez des termes français transparents et non pas des codes.
Le test de Wilcoxon compare deux séries ou groupes de données d'une même variable quantitative ou semi-quantitative. Il s'applique lorsque nous ne pouvons pas utiliser le test T de Student car les conditions de normalité des données ne sont pas validées.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
L'effectif de l'échantillon a une influence sur l'intervalle de confiance et la puissance du test. En général, plus l'échantillon est grand, plus l'intervalle de confiance est étroit. En outre, un effectif d'échantillon plus grand donne au test plus de puissance pour détecter une différence.
Un test non paramétrique est un test d'hypothèse qui n'exige pas que la distribution de la population soit caractérisée par certains paramètres. Par exemple, de nombreux tests d'hypothèse supposent que la population obéit à une loi normale pour les paramètres µ et σ.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
Dans l'onglet Options, activez les options Test du khi² et le test exact de Fisher. Dans l'onglet Sorties, activez les options Effectifs théoriques et Proportions/ colonnes. Cliquez sur le bouton OK pour lancer les calculs. Les résultats apparaissent dans une nouvelle feuille.
Conditions d'application du test de Kruskal-Wallis
Pour calculer un test de Kruskal-Wallis, il suffit de disposer de plusieurs échantillons aléatoires indépendants présentant au moins des caractéristiques à échelle ordinale. Les variables ne doivent pas nécessairement satisfaire à une courbe de distribution.
Un des tests permettant de vérifier la normalité de la variable x est le test de Shapiro-Wilk. Il est appliquable pour des échantillons allant jusqu'à 50 valeurs. Il utilise le rapport de deux estimations de la variance.
Pour calculer le test de Wilcoxon pour deux échantillons dépendants, on calcule d'abord la différence entre les valeurs dépendantes. Une fois les différences calculées, les valeurs absolues des différences sont utilisées pour former les classements.
Si la valeur p du test de Levene est supérieure à 0,05, alors les variances ne sont pas significativement différentes les unes des autres (c'est-à-dire que l'hypothèse d'homogénéité de la variance est satisfaite).
Par exemple, si vous voulez comparer une moyenne observée à une valeur théorique : Vous souhaitez comparer la moyenne des notes en mathématiques d'une classe à la moyenne du pays ? Dans ce cas nous allons utiliser un test paramétrique car nous pouvons supposer que les données suivent une distribution normale.
Le dépouillement des votes
Il se décompose en plusieurs étapes : Les membres du bureau dénombrent les émargements. L'urne est ouverte, le nombre d'enveloppes, ainsi que de bulletins sans enveloppe, est vérifié : il doit être conforme aux émargements. Dans le cas contraire, il en est fait mention au procès-verbal.
Le test de Shapiro-Wilk est le plus utilisé pour évaluer la distribution Normale d'un échantillon. Il est adapté aussi bien aux petits qu'aux grands échantillons. Ce test réalisable sur un logiciel de statistique donne directement la p-value.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure que les données ne suivent pas une loi normale alors qu'elles suivent une loi normale.