Le nombre 0 a une infinité de diviseurs , car tous les nombres divisent 0 et le résultat vaut 0 (excepté pour 0 lui-même car la division par 0 n'a pas de sens, il est possible toutefois de dire que 0 est un multiple de 0 ).
0 est un diviseur de zéro. Les diviseurs de zéro sont les éléments non réguliers.
Si n est égal à 1, n ne possède qu'un seul diviseur : 1. Tout entier n strictement supérieur à 1 possède au moins deux diviseurs 1 et n qui sont appelés ses diviseurs triviaux.
Zéro est le seul nombre entier qui ne possède qu'un seul multiple: lui-même (0). Zéro possède un seul multiple, mais il est le multiple de tous les nombres entiers.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Dans l'ensemble des entiers naturels
On remarque alors que 1 divise tout entier naturel et que 0 est divisible par tout entier naturel.
Un nombre égal à la somme de ses diviseurs propres est parfait. Un diviseur propre est un diviseur autre que le nombre lui-même. Le premier nombre parfait est 6. En effet 1, 2 et 3 sont les diviseurs propres de 6 et 1+2+3=6.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Le nombre 0 a une infinité de diviseurs , car tous les nombres divisent 0 et le résultat vaut 0 (excepté pour 0 lui-même car la division par 0 n'a pas de sens, il est possible toutefois de dire que 0 est un multiple de 0 ).
Ainsi, les chiffres sont des symboles mathématiques de base auxquels on associe une valeur numérique. Dans la symbolique arabe utilisée en France, il n'existe pas plus de 10 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. À l'image de ce qui se passe entre les lettres et les mots, les chiffres servent à écrire des nombres.
1 est le seul nombre parfait d'ordre 1 (voir nombre parfait multiple). 1 est égal à la somme de ses chiffres dans tout système de numération de base différente, c'est un nombre Harshad complet. 1 est un nombre méandrique, un nombre semi-méandrique et un nombre méandrique ouvert.
Les diviseurs d'un nombre
Un diviseur d'un nombre est un nombre entier qui divise ce nombre sans qu'il n'y ait de reste. En d'autres mots, un nombre entier est un diviseur d'un autre nombre si le quotient est un nombre entier.
Les multiples de 1 sont 0, 1, 2, 3, 4, ..., c'est-à-dire, tout nombre est multiple de 1. Les multiples de 0 sont 0, 0, 0, 0, 0, ..., c'est-à-dire, zéro n'a que lui-même comme multiple.
Le nombre 0 est considéré comme un multiple de tout nombre entier n, car : 0 = 0 × n, mais 0 n'est un diviseur d'aucun nombre entier.
Diviser un nombre par 4 c'est calculer son quart. Les multiples de 4 sont tous les nombres présents dans la table de 4 : 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52 … sont des multiples de 4.
Les diviseurs d'un entier
Un nombre entier est divisible par 2 si son chiffre des unités est 0, 2, 4, 6 ou 8.
Un nombre entier n > 1 qui ne possède pas de diviseur propre est appelé un nombre premier (Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et...). (Les nombres 0 et 1 ne sont pas premiers.)
A noter que l'inverse de 0 n'existe pas car il est impossible de diviser par 0 en mathématiques. En effet, la division par 0 ne représente rien car on ne peut pas diviser une partie par quelque chose qui n'existe pas.
De plus, le nombre 0 ne peut pas être divisé par lui-même, car la division par 0 est une opération non définie. Il n'est donc pas un nombre premier.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av. J. -C.)
Le nombre d'or. Où le rencontre -t-on ? On le désigne par la lettre grecque ( phi ) en hommage au sculpteur grec Phidias (né vers 490 et mort vers 430 avant J.C) qui décora le Parthénon à Athènes. C'est Théodore Cook qui introduisit cette notation en 1914.
Le symbole de l'infini, en mathématiques et au-delà des mathématiques, est « ∞ », inventé par le mathématicien John Wallis au XVII e siècle, signe dont l'origine est controversée et dont la forme peut évoquer un « 8 » horizontal (mais ce n'est pas en référence au chiffre 8 que ce signe fut choisi) ; cette forme a été ...