Les multiples de 1 sont 0, 1, 2, 3, 4, ..., c'est-à-dire, tout nombre est multiple de 1. Les multiples de 0 sont 0, 0, 0, 0, 0, ..., c'est-à-dire, zéro n'a que lui-même comme multiple.
- Les multiples de 5 sont les nombres qui se terminent par 0 ou 5. Exemples de multiples de 5 : 5, 10, 15, 1 005...
Si n est égal à 1, n ne possède qu'un seul diviseur : 1. Tout entier n strictement supérieur à 1 possède au moins deux diviseurs 1 et n qui sont appelés ses diviseurs triviaux.
L'entier 0 est un multiple de tout nombre entier n, car 0 = 0 × n.
Les multiples de 1 sont 0, 1, 2, 3, 4, ..., c'est-à-dire, tout nombre est multiple de 1.
Zéro est le seul nombre entier qui ne possède qu'un seul multiple: lui-même (0). Zéro possède un seul multiple, mais il est le multiple de tous les nombres entiers. Tous les nombres entiers sont dans la table de multiplication de 1, donc tous les nombres sont des multiples de 1.
Un chiffre : c'est quoi ? Il n' existe que dix chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Ce sont des signes , des symboles qui servent à écrire tous les nombres, comme les lettres de l'alphabet servent à écrire tous les mots du dictionnaire.
Définition 2 : Un nombre naturel est premier s'il est plus grand que 1 et qu'il n'est divisible que par 1 et par lui-même. » « Donc 1 n'est pas premier », ai-je conclu.
1 est le seul nombre parfait d'ordre 1 (voir nombre parfait multiple). 1 est égal à la somme de ses chiffres dans tout système de numération de base différente, c'est un nombre Harshad complet. 1 est un nombre méandrique, un nombre semi-méandrique et un nombre méandrique ouvert.
Le nombre 0 est considéré comme un multiple de tout nombre entier n, car : 0 = 0 × n, mais 0 n'est un diviseur d'aucun nombre entier.
L'ensemble des multiples d'un nombre est le résultat de la multiplication de ce nombre par chacun des nombres entiers (Z ). 12 est un multiple de 3 , car 3×4=12 3 × 4 = 12 . L'ensemble des multiples de 3 est obtenu en multipliant 3 par chacun des éléments de Z . {…,-12,-9,-6,-3,0,3,6,9,12,…}
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,… sont tous des multiples de trois.
0 est un diviseur de zéro. Les diviseurs de zéro sont les éléments non réguliers.
Diviser un nombre par 4 c'est calculer son quart. Les multiples de 4 sont tous les nombres présents dans la table de 4 : 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52 … sont des multiples de 4.
Les multiples de 2 sont tous des nombres pairs. Ex. : 12, 186, 2 474, 751 200, etc. Les multiples de 5 se terminent tous par 0 ou 5. Ex. : 15, 980, 52 135, 912 680, etc.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le 1 ici 1=1 n'est pas un chiffre c'est un nombre et pour le nombre 1 1=1 est faux. Car on n'arrive pas à faire une quantité identique d'un seule 1 pour deux 1 identique. Mais pour 2 ou 3 c'est possible.
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
1 Si n est pair (c'est-à-dire qu'il existe un entier k tel que n = 2k) alors n2 est pair donc n2 +n est pair. Si n est impair (c'est-à-dire qu'il existe un entier k tel que n = 2k + 1) alors n2 est impair (car n2 = 2(2k2 + 2k)+1) donc n2 + n est pair. Donc, pour tout n ∈ N, n2 + n est pair.
Pour savoir si un nombre est multiple de 2, ou de 5, ou de 15, etc. il suffit de faire la division de ce nombre par 2, ou par 5, ou par 15, etc. Si le quotient est exact et le reste nul, alors il est bien un multiple.
Définition Un entier naturel est dit premier s'il admet exactement deux diviseurs distincts : 1 et lui-même.